-
Notifications
You must be signed in to change notification settings - Fork 28
/
basic_api.py
424 lines (352 loc) · 21.7 KB
/
basic_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
import websocket #NOTE: websocket-client (https://github.com/websocket-client/websocket-client)
import uuid
import json
import urllib.request
import urllib.parse
import os
import random
from requests_toolbelt import MultipartEncoder
from PIL import Image
import io
# ---------------------------------------------------------------------------------------------------------------------
# Establish Connection
def open_websocket_connection():
"""
Establishes a websocket connection to ComfyUI running under the given address and returns the connection object, server address, and a unique client ID.
This function generates a unique client ID using UUID4, connects to a websocket server at a predefined address, and
returns the websocket connection object, server address, and the generated client ID. The server address is hardcoded
to '127.0.0.1:8188'. The connection is made to a specific endpoint on the server that accepts a clientId query parameter.
Returns:
tuple: A tuple containing the websocket connection object, server address (str), and client ID (str).
"""
server_address='127.0.0.1:8188'
client_id=str(uuid.uuid4())
ws = websocket.WebSocket()
ws.connect("ws://{}/ws?clientId={}".format(server_address, client_id))
return ws, server_address, client_id
# ---------------------------------------------------------------------------------------------------------------------
# Basic API calls
def queue_prompt(prompt, client_id, server_address):
"""
Sends a prompt to a ComfyUI to place it into the workflow queue
This function takes a text prompt along with a client identifier and the server's address, then queues the prompt
for processing on running ComfyUI. The server is expected to accept JSON data containing the prompt and client ID, and
it returns a JSON response. The communication is done over HTTP.
Args:
prompt (str): The text prompt to be sent to running ComfyUI for processing.
client_id (str): The identifier for the client sending the request, used by the server to track or manage the request.
server_address (str): The address of running ComfyUI where the prompt is to be sent, excluding the protocol prefix.
Returns:
dict: A dictionary parsed from the JSON response from running ComfyUI, containing the result of processing the prompt.
"""
p = {"prompt": prompt, "client_id": client_id}
headers = {'Content-Type': 'application/json'}
data = json.dumps(p).encode('utf-8')
req = urllib.request.Request("http://{}/prompt".format(server_address), data=data, headers=headers)
return json.loads(urllib.request.urlopen(req).read())
def get_history(prompt_id, server_address):
"""
Fetches the history to a given prompt ID from ComfyUI
This function makes an HTTP GET request to a specified server address, requesting the history associated with
a given prompt ID. The server is expected to return a JSON response that contains the history data, that
include e.g the paths to the generated Images
Args:
prompt_id (str): The unique identifier for the prompt whose history is being requested.
server_address (str): The address of ComfyUI from which to retrieve the history, excluding the protocol prefix.
Returns:
A dictionary parsed from the JSON response containing the history associated with the specified prompt ID.
"""
with urllib.request.urlopen("http://{}/history/{}".format(server_address, prompt_id)) as response:
return json.loads(response.read())
def get_image(filename, subfolder, folder_type, server_address):
"""
Retrieves an image from ComfyUI based on specified parameters and returns the image data.
This function constructs a query string with the filename, subfolder, and folder type to request an image from
ComfyUI. It communicates over HTTP to access the specified resource. The server is expected to return the
image data in response to the constructed URL, which includes the server address and the query parameters.
Args:
filename (str): The name of the image file to retrieve.
subfolder (str): The subfolder within the server's storage where the image is located.
folder_type (str): The type of folder options are "output", "temp", "input" where the image is stored.
server_address (str): The address of running ComfyUI from which to retrieve the image, excluding the protocol prefix.
Returns:
The raw image data as returned by ComfyUI in response to the query.
"""
data = {"filename": filename, "subfolder": subfolder, "type": folder_type}
url_values = urllib.parse.urlencode(data)
with urllib.request.urlopen("http://{}/view?{}".format(server_address, url_values)) as response:
return response.read()
def upload_image(input_path, name, server_address, image_type="input", overwrite=False):
"""
Uploads an image to ComfyUI using multipart/form-data encoding.
This function opens an image file from the specified path and uploads it to running ComfyUI. The server's address,
the name to save the image as, and optional parameters for image type and overwrite behavior are provided as arguments.
The image is uploaded as 'image/png'.
Args:
input_path (str): The file system path to the image file to be uploaded.
name (str): The name under which the image will be saved on ComfyUI.
server_address (str): The address of running ComfyUI where the image will be uploaded, excluding the protocol prefix.
image_type (str, optional): The type/category of the image being uploaded. Defaults to "input". Other options are "output" and "temp".
overwrite (bool, optional): Flag indicating whether an existing file with the same name should be overwritten.
Defaults to False.
Returns:
The ComfyUI response to the upload request.
"""
with open(input_path, 'rb') as file:
multipart_data = MultipartEncoder(
fields= {
'image': (name, file, 'image/png'),
'type': image_type,
'overwrite': str(overwrite).lower()
}
)
data = multipart_data
headers = { 'Content-Type': multipart_data.content_type }
request = urllib.request.Request("http://{}/upload/image".format(server_address), data=data, headers=headers)
with urllib.request.urlopen(request) as response:
return response.read()
# -------------------------------------------------------------------------------------------------------
# API helper
def generate_image_by_prompt(prompt, output_path, save_previews=False):
"""
Generates an image based on a given text prompt and saves it to a specified path, optionally saving preview images.
This function establishes a websocket connection to initiate a request for image generation based on a text prompt.
It sends the prompt to ComfyUI via the connection, tracks the progress of the request, retrieves the generated
images once the process is complete, and saves the resulting image(s) to the specified output path. If enabled,
it also saves preview images alongside the final image. The function ensures the websocket connection is closed
properly after the operation completes or if an error occurs.
Args:
prompt (str): The text prompt based on which the image is to be generated.
output_path (str): The file system path where the generated image(s) should be saved.
save_previews (bool, optional): A flag indicating whether to save preview images alongside the final image.
Defaults to False.
Raises:
Exception: Any exception that occurs during the operation, ensuring the websocket is closed before re-raising.
"""
try:
ws, server_address, client_id = open_websocket_connection()
prompt_id = queue_prompt(prompt, client_id, server_address)['prompt_id']
track_progress(prompt, ws, prompt_id)
images = get_images(prompt_id, server_address, save_previews)
save_image(images, output_path, save_previews)
finally:
ws.close()
def generate_image_by_prompt_and_image(prompt, output_path, input_path, filename, save_previews=False):
"""
Generates an image based on a given text prompt and an input image, saving the output to a specified path,
and optionally saving preview images.
This function establishes a websocket connection for communication with ComfyUI, uploads an input image to be used
in the image generation process, and sends a text prompt related to the image. It then tracks the progress of the
request, retrieves the generated images upon completion, and saves the resulting image(s) to the specified output
path. If enabled, preview images are also saved. The websocket connection is properly closed after the operation
completes or in the event of an error.
Args:
prompt (str): The text prompt based on which the image is to be generated.
output_path (str): The file system path where the generated image(s) should be saved.
input_path (str): The file system path of the input image to be uploaded for the generation process.
filename (str): The name under which the input image will be saved on CiomfyUI.
save_previews (bool, optional): Indicates whether to save preview images alongside the final generated image.
Defaults to False.
Raises:
Exception: Any exception that occurs during the operation, ensuring the websocket is closed before re-raising.
"""
try:
ws, server_address, client_id = open_websocket_connection()
upload_image(input_path, filename, server_address)
prompt_id = queue_prompt(prompt, client_id, server_address)['prompt_id']
track_progress(prompt, ws, prompt_id)
images = get_images(prompt_id, server_address, save_previews)
save_image(images, output_path, save_previews)
finally:
ws.close()
def save_image(images, output_path, save_previews):
"""
Saves images to a specified directory, with optional support for saving preview images in a separate subdirectory.
This function iterates through a list of image data dictionaries, each containing image data and metadata such as
file name and type. Depending on the type of the image ('temp' for temporary/preview images and another value for
final images) and whether saving previews is enabled, images are saved to either the main output directory or a
'temp' subdirectory within it. The function handles the creation of these directories if they do not already exist.
Images are saved in the format they are received (as indicated by their file names).
Args:
images (list of dict): A list of dictionaries, each containing 'image_data' (binary image data),
'file_name' (name under which the image should be saved), and 'type' ('temp' for previews).
output_path (str): The base directory path where the images should be saved.
save_previews (bool): Indicates whether preview images (of type 'temp') should be saved in a separate subdirectory.
Raises:
Exception: Prints an error message if an image fails to be saved due to an exception.
"""
for itm in images:
directory = os.path.join(output_path, 'temp/') if itm['type'] == 'temp' and save_previews else output_path
os.makedirs(directory, exist_ok=True)
try:
image = Image.open(io.BytesIO(itm['image_data']))
image.save(os.path.join(directory, itm['file_name']))
except Exception as e:
print(f"Failed to save image {itm['file_name']}: {e}")
def track_progress(prompt, ws, prompt_id):
"""
Tracks the progress of image generation by listening to websocket messages for a specific prompt ID.
This function listens to messages from a websocket connection associated with a particular image generation
request. It decodes the messages to monitor progress updates, including steps completed in the K-Sampler,
cached execution steps, and current executing nodes. Progress information is printed to the console. The
function completes when all nodes associated with the prompt have finished executing or when a message
indicates that the entire execution related to the prompt ID is complete.
Args:
prompt (dict): The workflow or prompt configuration, used to determine the total number of nodes.
ws (websocket.WebSocket): The websocket connection through which progress messages are received.
prompt_id (str): The unique identifier for the prompt whose progress is being tracked.
Note:
This function assumes that messages received through the websocket are JSON strings with specific
types indicating the nature of the progress update. Binary messages are ignored.
"""
node_ids = list(prompt.keys())
finished_nodes = []
while True:
out = ws.recv()
if isinstance(out, str):
message = json.loads(out)
if message['type'] == 'progress':
data = message['data']
current_step = data['value']
print('In K-Sampler -> Step: ', current_step, ' of: ', data['max'])
if message['type'] == 'execution_cached':
data = message['data']
for itm in data['nodes']:
if itm not in finished_nodes:
finished_nodes.append(itm)
print('Progess: ', len(finished_nodes), '/', len(node_ids), ' Tasks done')
if message['type'] == 'executing':
data = message['data']
if data['node'] not in finished_nodes:
finished_nodes.append(data['node'])
print('Progess: ', len(finished_nodes), '/', len(node_ids), ' Tasks done')
if data['node'] is None and data['prompt_id'] == prompt_id:
break #Execution is done
else:
continue
return
def get_images(prompt_id, server_address, allow_preview = False):
"""
Retrieves images generated from a prompt, including optional preview images, from the server.
This function fetches the history of a prompt using its ID to get details of the outputs, specifically images
generated in response to the prompt. It allows for the retrieval of both final output images and, if specified,
preview images. The images are fetched from the server using their filename, subfolder location, and type, and
are returned as a list of dictionaries, each containing the image's binary data, filename, and type.
Args:
prompt_id (str): The unique identifier for the prompt whose images are to be retrieved.
server_address (str): The address of the server from which to retrieve the images.
allow_preview (bool, optional): Indicates whether preview images should also be retrieved along with final images.
Returns:
list of dict: A list of dictionaries, each containing 'image_data' (the binary data of an image), 'file_name'
(the name of the file), and 'type' ('temp' for preview images, 'output' for final images).
"""
output_images = []
history = get_history(prompt_id, server_address)[prompt_id]
for node_id in history['outputs']:
node_output = history['outputs'][node_id]
output_data = {}
if 'images' in node_output:
for image in node_output['images']:
if allow_preview and image['type'] == 'temp':
preview_data = get_image(image['filename'], image['subfolder'], image['type'], server_address)
output_data['image_data'] = preview_data
if image['type'] == 'output':
image_data = get_image(image['filename'], image['subfolder'], image['type'], server_address)
output_data['image_data'] = image_data
output_data['file_name'] = image['filename']
output_data['type'] = image['type']
output_images.append(output_data)
return output_images
def load_workflow(workflow_path):
"""
Loads a ComfyUI workflow configuration from a JSON file and returns its content as a JSON-formatted string.
This function attempts to open and read a workflow configuration file specified by the given path. If successful,
it parses the file as JSON and returns a string representation of the JSON object. If the file is not found or
contains invalid JSON, it prints an error message and returns None.
Args:
workflow_path (str): The file system path to the workflow configuration file to be loaded.
Returns:
str or None: A JSON-formatted string representing the workflow configuration if the file is successfully
loaded and parsed; otherwise, None.
Raises:
FileNotFoundError: If the specified file does not exist.
json.JSONDecodeError: If the file contains invalid JSON.
"""
try:
with open(workflow_path, 'r') as file:
workflow = json.load(file)
return json.dumps(workflow)
except FileNotFoundError:
print(f"The file {workflow_path} was not found.")
return None
except json.JSONDecodeError:
print(f"The file {workflow_path} contains invalid JSON.")
return None
# ---------------------------------------------------------------------------------------------------------------
# Call API
def prompt_to_image(workflow, positve_prompt, negative_prompt='', save_previews=False):
"""
Converts a text prompt into an image based on a predefined ComfyUI workflow configuration, with optional support
for a negative prompt and saving preview images.
This function takes a workflow configuration as a JSON string, along with positive and optional negative text prompts.
It processes the workflow to update the seed for randomness and to set the positive (and optionally negative) prompts.
The updated workflow is then used to generate an image, which is saved to a specified output directory. The function
supports saving intermediate preview images if specified.
Args:
workflow (str): A JSON-formatted string representing the ComfyUI workflow configuration for image generation.
positive_prompt (str): The main text prompt to guide the image generation.
negative_prompt (str, optional): An optional text prompt meant to guide the image generation in what to avoid.
Defaults to an empty string.
save_previews (bool, optional): A flag indicating whether to save preview images alongside the final image.
Defaults to False.
Note:
The workflow configuration should include at least one 'KSampler' class type for randomness and input nodes
for positive and negative prompts. This function dynamically updates these nodes based on the provided prompts.
"""
prompt = json.loads(workflow)
id_to_class_type = {id: details['class_type'] for id, details in prompt.items()}
k_sampler = [key for key, value in id_to_class_type.items() if value == 'KSampler'][0]
prompt.get(k_sampler)['inputs']['seed'] = random.randint(10**14, 10**15 - 1)
postive_input_id = prompt.get(k_sampler)['inputs']['positive'][0]
prompt.get(postive_input_id)['inputs']['text'] = positve_prompt
if negative_prompt != '':
negative_input_id = prompt.get(k_sampler)['inputs']['negative'][0]
prompt.get(negative_input_id)['inputs']['text'] = negative_prompt
generate_image_by_prompt(prompt, './output/blog/cyborg', save_previews)
def prompt_image_to_image(workflow, input_path, positve_prompt, negative_prompt='', save_previews=False):
"""
Transforms an input image according to a positive prompt, with an optional negative prompt, based on a ComfyUI workflow
configuration, and saves the output image(s), potentially including previews.
This function updates a given workflow configuration with a positive prompt, an optional negative prompt, and
an input image path. It dynamically adjusts the workflow for image-to-image transformation, setting a random
seed for the process, updating text prompts for the transformation, and specifying the input image. The modified
workflow is used to generate an output image that is saved to a predefined output directory.
Args:
workflow (str): The workflow configuration as a JSON-formatted string.
input_path (str): The file system path of the input image to be transformed.
positive_prompt (str): The text prompt describing the desired transformation.
negative_prompt (str, optional): An optional text prompt describing undesired aspects of the transformation.
Defaults to an empty string.
save_previews (bool, optional): Indicates whether to save preview images alongside the final image.
Defaults to False.
Note:
The workflow should include a 'KSampler' for randomness, input nodes for positive and negative prompts,
and a 'LoadImage' node for the input image. This function updates these nodes based on provided arguments.
"""
prompt = json.loads(workflow)
id_to_class_type = {id: details['class_type'] for id, details in prompt.items()}
k_sampler = [key for key, value in id_to_class_type.items() if value == 'KSampler'][0]
prompt.get(k_sampler)['inputs']['seed'] = random.randint(10**14, 10**15 - 1)
postive_input_id = prompt.get(k_sampler)['inputs']['positive'][0]
prompt.get(postive_input_id)['inputs']['text'] = positve_prompt
if negative_prompt != '':
negative_input_id = prompt.get(k_sampler)['inputs']['negative'][0]
prompt.get(negative_input_id)['inputs']['text'] = negative_prompt
image_loader = [key for key, value in id_to_class_type.items() if value == 'LoadImage'][0]
filename = input_path.split('/')[-1]
prompt.get(image_loader)['inputs']['image'] = filename
generate_image_by_prompt_and_image(prompt, './output/blog/img2img', input_path, filename, save_previews)
# workflow = load_workflow('./workflows/basic_image_to_image.json')
# prompt_to_image(workflow, 'Cyborg in the cyberspace connection to different interfaces and screens with wires, cinematic, colorful, black and neon turquioise', 'ugly, lowres, text, branding', save_previews=True)
# input_path = ''
# prompt_image_to_image(workflow, input_path, 'Woman in a white dress standing in middle of a crowded place, skyscrapers in the background, cinematic, monotone colors, dark, dystopian', save_previews=True)