-
Notifications
You must be signed in to change notification settings - Fork 0
/
Word.asv
162 lines (128 loc) · 5.94 KB
/
Word.asv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
classdef emotion < handle
properties
N = 3; % number of states
A = []; % NxN transition probability matrix
prior = []; % Nx1 initial state distribution vector
mu = []; % DxN mean vector (D = number of features)
Sigma = []; % DxDxN covariance matrix
name = '';
end
methods
function self = emotion(name)
self.name = char(name);
end
function log_likelihood = log_likelihood(self, observations)
B = self.state_likelihood(observations);
log_likelihood = forward(self, observations, B);
end
function [log_likelihood, alpha] = forward(self, observations, B)
log_likelihood = 0;
T = size(observations, 2);
alpha = zeros(self.N, T);
for t = 1:T
if t == 1
% Initialization
alpha(:, t) = B(:, t) .* self.prior;
else
% Induction
alpha(:, t) = B(:, t) .* (self.A' * alpha(:, t - 1));
end
% Scaling
alpha_sum = sum(alpha(:, t));
alpha(:, t) = alpha(:, t) ./ alpha_sum;
log_likelihood = log_likelihood + log(alpha_sum);
end
end
function beta = backward(self, observations, B)
T = size(observations, 2);
beta = zeros(self.N, T);
% Initialization
beta(:, T) = ones(self.N, 1);
for t = (T - 1):-1:1
% Induction
beta(:, t) = self.A * (beta(:, t + 1) .* B(:, t + 1));
% Scaling
beta(:, t) = beta(:, t) ./ sum(beta(:, t));
end
end
% Evaluates the Gaussian pdfs for each state at the observations
% Returns a matrix containing B(s, t) = f(O_t | S_t = s)
function B = state_likelihood(self, observations)
B = zeros(self.N, size(observations, 2));
for s = 1:self.N
B(s, :) = mvnpdf(observations', self.mu(:, s)', self.Sigma(:, :, s));
end
end
function em_initialize(self, observations)
% Random guessing
self.prior = normalise(rand(self.N, 1));
self.A = mk_stochastic(rand(self.N));
% All states start out with the empirical diagonal covariance
self.Sigma = repmat(diag(diag(cov(observations'))), [1 1 self.N]);
% Initialize each mean to a random data point
indices = randperm(size(observations, 2));
self.mu = observations(:, indices(1:self.N));
end
function train(self, observations)
self.em_initialize(observations);
for i = 1:15
log_likelihood = self.em_step(observations);
display(sprintf('Step %02d: log_likelihood = %f', i, log_likelihood))
self.plot_gaussians(observations);
end
end
function log_likelihood = em_step(self, observations)
B = self.state_likelihood(observations);
D = size(observations, 1);
T = size(observations, 2);
[log_likelihood, alpha] = self.forward(observations, B);
beta = self.backward(observations, B);
xi_sum = zeros(self.N, self.N);
gamma = zeros(self.N, T);
for t = 1:(T - 1)
% The normalizations are done to get valid distributions for each time step
xi_sum = xi_sum + normalise(self.A .* (alpha(:, t) * (beta(:, t + 1) .* B(:, t + 1))'));
gamma(:, t) = normalise(alpha(:, t) .* beta(:, t));
end
gamma(:, T) = normalise(alpha(:, T) .* beta(:, T));
expected_prior = gamma(:, 1);
expected_A = mk_stochastic(xi_sum);
expected_mu = zeros(D, self.N);
expected_Sigma = zeros(D, D, self.N);
gamma_state_sum = sum(gamma, 2);
% Set any zeroes to one before dividing to avoid NaN
gamma_state_sum = gamma_state_sum + (gamma_state_sum == 0);
for s = 1:self.N
gamma_observations = observations .* repmat(gamma(s, :), [D 1]);
expected_mu(:, s) = sum(gamma_observations, 2) / gamma_state_sum(s);
% Using Sigma = E(X * X') - mu * mu'
% Also make sure it's symmetric
expected_Sigma(:, :, s) = symmetrize(gamma_observations * observations' / gamma_state_sum(s) - ...
expected_mu(:, s) * expected_mu(:, s)');
end
% Ninja trick to ensure positive semidefiniteness
expected_Sigma = expected_Sigma + repmat(0.01 * eye(D, D), [1 1 self.N]);
% M-step
self.prior = expected_prior;
self.A = expected_A;
self.mu = expected_mu;
self.Sigma = expected_Sigma;
end
function plot_gaussians(self, observations)
% Plotting two first dimensions
plot(observations(1, :), observations(2, :), 'g+')
hold on
plot(self.mu(1, :), self.mu(2, :), 'r*')
for s = 1:size(self.Sigma, 3)
error_ellipse(self.Sigma(1:2, 1:2, s), 'mu', self.mu(1:2, s), 'style', 'r-', 'conf', .75)
end
axis([0 4000 0 4000])
hold off
title(sprintf('Training %s', self.name))
xlabel('F1 [Hz]')
ylabel('F2 [Hz]')
drawnow
%pause
end
end
end