-
Notifications
You must be signed in to change notification settings - Fork 0
/
mfcc.m
175 lines (150 loc) · 7.19 KB
/
mfcc.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
function [ CC, FBE, frames ] = mfcc( speech, fs, Tw, Ts, alpha, window, R, M, N, L )
% MFCC Mel frequency cepstral coefficient feature extraction.
%
% MFCC(S,FS,TW,TS,ALPHA,WINDOW,R,M,N,L) returns mel frequency
% cepstral coefficients (MFCCs) computed from speech signal given
% in vector S and sampled at FS (Hz). The speech signal is first
% preemphasised using a first order FIR filter with preemphasis
% coefficient ALPHA. The preemphasised speech signal is subjected
% to the short-time Fourier transform analysis with frame durations
% of TW (ms), frame shifts of TS (ms) and analysis window function
% given as a function handle in WINDOW. This is followed by magnitude
% spectrum computation followed by filterbank design with M triangular
% filters uniformly spaced on the mel scale between lower and upper
% frequency limits given in R (Hz). The filterbank is applied to
% the magnitude spectrum values to produce filterbank energies (FBEs)
% (M per frame). Log-compressed FBEs are then decorrelated using the
% discrete cosine transform to produce cepstral coefficients. Final
% step applies sinusoidal lifter to produce liftered MFCCs that
% closely match those produced by HTK [1].
%
% [CC,FBE,FRAMES]=MFCC(...) also returns FBEs and windowed frames,
% with feature vectors and frames as columns.
%
% This framework is based on Dan Ellis' rastamat routines [2]. The
% emphasis is placed on closely matching MFCCs produced by HTK [1]
% (refer to p.337 of [1] for HTK's defaults) with simplicity and
% compactness as main considerations, but at a cost of reduced
% flexibility. This routine is meant to be easy to extend, and as
% a starting point for work with cepstral coefficients in MATLAB.
% The triangular filterbank equations are given in [3].
%
% Inputs
% S is the input speech signal (as vector)
%
% FS is the sampling frequency (Hz)
%
% TW is the analysis frame duration (ms)
%
% TS is the analysis frame shift (ms)
%
% ALPHA is the preemphasis coefficient
%
% WINDOW is a analysis window function handle
%
% R is the frequency range (Hz) for filterbank analysis
%
% M is the number of filterbank channels
%
% N is the number of cepstral coefficients
% (including the 0th coefficient)
%
% L is the liftering parameter
%
% Outputs
% CC is a matrix of mel frequency cepstral coefficients
% (MFCCs) with feature vectors as columns
%
% FBE is a matrix of filterbank energies
% with feature vectors as columns
%
% FRAMES is a matrix of windowed frames
% (one frame per column)
%
% Example
% Tw = 25; % analysis frame duration (ms)
% Ts = 10; % analysis frame shift (ms)
% alpha = 0.97; % preemphasis coefficient
% R = [ 300 3700 ]; % frequency range to consider
% M = 20; % number of filterbank channels
% C = 13; % number of cepstral coefficients
% L = 22; % cepstral sine lifter parameter
%
% % hamming window (see Eq. (5.2) on p.73 of [1])
% hamming = @(N)(0.54-0.46*cos(2*pi*[0:N-1].'/(N-1)));
%
% % Read speech samples, sampling rate and precision from file
% [ speech, fs, nbits ] = wavread( 'sp10.wav' );
%
% % Feature extraction (feature vectors as columns)
% [ MFCCs, FBEs, frames ] = ...
% mfcc( speech, fs, Tw, Ts, alpha, hamming, R, M, C, L );
%
% % Plot cepstrum over time
% figure('Position', [30 100 800 200], 'PaperPositionMode', 'auto', ...
% 'color', 'w', 'PaperOrientation', 'landscape', 'Visible', 'on' );
%
% imagesc( [1:size(MFCCs,2)], [0:C-1], MFCCs );
% axis( 'xy' );
% xlabel( 'Frame index' );
% ylabel( 'Cepstrum index' );
% title( 'Mel frequency cepstrum' );
%
% References
%
% [1] Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D.,
% Liu, X., Moore, G., Odell, J., Ollason, D., Povey, D.,
% Valtchev, V., Woodland, P., 2006. The HTK Book (for HTK
% Version 3.4.1). Engineering Department, Cambridge University.
% (see also: http://htk.eng.cam.ac.uk)
%
% [2] Ellis, D., 2005. Reproducing the feature outputs of
% common programs using Matlab and melfcc.m. url:
% http://labrosa.ee.columbia.edu/matlab/rastamat/mfccs.html
%
% [3] Huang, X., Acero, A., Hon, H., 2001. Spoken Language
% Processing: A guide to theory, algorithm, and system
% development. Prentice Hall, Upper Saddle River, NJ,
% USA (pp. 314-315).
%
% See also EXAMPLE, COMPARE, FRAMES2VEC, TRIFBANK.
% Author: Kamil Wojcicki, September 2011
%% PRELIMINARIES
% Ensure correct number of inputs
if( nargin~= 10 ), help mfcc; return; end;
% Explode samples to the range of 16 bit shorts
if( max(abs(speech))<=1 ), speech = speech * 2^15; end;
Nw = round( 1E-3*Tw*fs ); % frame duration (samples)
Ns = round( 1E-3*Ts*fs ); % frame shift (samples)
nfft = 2^nextpow2( Nw ); % length of FFT analysis
K = nfft/2+1; % length of the unique part of the FFT
%% HANDY INLINE FUNCTION HANDLES
% Forward and backward mel frequency warping (see Eq. (5.13) on p.76 of [1])
% Note that base 10 is used in [1], while base e is used here and in HTK code
hz2mel = @( hz )( 1127*log(1+hz/700) ); % Hertz to mel warping function
mel2hz = @( mel )( 700*exp(mel/1127)-700 ); % mel to Hertz warping function
% Type III DCT matrix routine (see Eq. (5.14) on p.77 of [1])
dctm = @( N, M )( sqrt(2.0/M) * cos( repmat([0:N-1].',1,M) ...
.* repmat(pi*([1:M]-0.5)/M,N,1) ) );
% Cepstral lifter routine (see Eq. (5.12) on p.75 of [1])
ceplifter = @( N, L )( 1+0.5*L*sin(pi*[0:N-1]/L) );
%% FEATURE EXTRACTION
% Preemphasis filtering (see Eq. (5.1) on p.73 of [1])
speech = filter( [1 -alpha], 1, speech ); % fvtool( [1 -alpha], 1 );
% Framing and windowing (frames as columns)
frames = vec2frames( speech, Nw, Ns, 'cols', window, false );
% Magnitude spectrum computation (as column vectors)
MAG = abs( fft(frames,nfft,1) );
% Triangular filterbank with uniformly spaced filters on mel scale
H = trifbank( M, K, R, fs, hz2mel, mel2hz ); % size of H is M x K
% Filterbank application to unique part of the magnitude spectrum
FBE = H * MAG(1:K,:); % FBE( FBE<1.0 ) = 1.0; % apply mel floor
% DCT matrix computation
DCT = dctm( N, M );
% Conversion of logFBEs to cepstral coefficients through DCT
CC = DCT * log( FBE );
% Cepstral lifter computation
lifter = ceplifter( N, L );
% Cepstral liftering gives liftered cepstral coefficients
CC = diag( lifter ) * CC; % ~ HTK's MFCCs
% EOF