-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
63 lines (45 loc) · 1.82 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from pathlib import Path
from typing import Tuple
import dash
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import plotly.graph_objects as go
import plotly.express as px
from dash.dependencies import Output, Input, State
from matplotlib.widgets import Button, Slider
import dash_core_components as dcc
import dash_html_components as html
import dash_bootstrap_components as dbc
from dashboard_components.population_vs_electricity_section import population_vs_electricity_section
from dashboard_components.glaciers_oil_areas_dash import glacier_and_oil_impacts
from dashboard_components.emissions import emission_section
from dashboard_components.catastrophe_section import catastrophe_section
from dashboard_components.machine_learning_section import machine_learning_results
def dashboard():
# app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
app = dash.Dash(external_stylesheets=[dbc.themes.DARKLY])
app.layout = dbc.Container([
html.H1(children='Global Climate Change Analysis'),
html.H5(children='- by Data Vault Team'),
html.Div(children='Anindita Guha | Devam Shah | Sriram Ponangi | Vigneshwari Ravichandran'),
html.Hr(),
html.H2(children="Electricity Generation Information:"),
population_vs_electricity_section(app),
html.Hr(),
html.H2(children="Glaciers and Oil"),
glacier_and_oil_impacts(app),
html.Hr(),
html.H2(children="Emissions:"),
emission_section(app),
html.Hr(),
html.H2(children="Catastrophe Information:"),
catastrophe_section(app),
html.Hr(),
html.H2(children="Machine Learning Results:"),
machine_learning_results(app),
])
return app
if __name__ == "__main__":
app = dashboard()
app.run_server(debug=True)