-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.jl
307 lines (227 loc) · 7.47 KB
/
test.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
using Plots
using Statistics
using PlutoUI
using Flux
using Zygote
using CUDA
using BSON
using PyCall
using ScikitLearn
using NNlib
using Optim
using NLsolve
using JLD2
using DataFrames
using StatsBase
using OhMyREPL
using DiffEqFlux
using ForwardDiff
using FiniteDiff
joblib = pyimport("joblib");
#pyplot();
unicodeplots();
modelPathₙ = "./model/ptmn90-2021-01-19T16:52:09.8/ptmn90";
modelFileₙ = modelPathₙ * ".bson";
trafoInFileₙ = modelPathₙ * ".input";
trafoOutFileₙ = modelPathₙ * ".output";
modelₙ = BSON.load(modelFileₙ);
φₙ = modelₙ[:model];
trafoXₙ = joblib.load(trafoInFileₙ);
trafoYₙ = joblib.load(trafoOutFileₙ);
paramsXₙ = modelₙ[:paramsX];
paramsYₙ = modelₙ[:paramsY];
function predictₙ(X)
return Float64.( ((length(size(X)) < 2) ? [X'] : X') |>
trafoXₙ.transform |>
adjoint |> φₙ |> adjoint |>
trafoYₙ.inverse_transform |>
adjoint )
end;
function nmos(Vgs, Vds, W, L)
return predictₙ([ Vgs' ; (Vgs.^2)'
; Vds' ; exp.(Vds)'
; W' ; L' ])
end;
function nmos_id(Vgs, Vds, W, L)
prd = nmos(Vgs, Vds, W, L)
return prd[ first(indexin(["id"], paramsYₙ)), : ][1];
end;
vgs = collect(0.0:0.01:1.2);
qvgs = vgs.^2.0;
vds = collect(0.0:0.01:1.2);
evds = exp.(vds);
len = length(vgs);
W = 1.0e-6;
w = fill(W, len);
L = 3.0e-7;
l = fill(L, len);
vg = 0.6;
vgc = fill(vg, len);
qvgc = vgc.^2.0;
vd = 0.6;
vdc = fill(vd, len);
evdc = exp.(vdc);
vbc = zeros(len);
nmos(vgs, vdc, w, l)
nmos_id(vgs, vdc, w, l)
xt = [ vgs vdc w l ]
[ gradient(nmos_id, x...) for x in eachrow(xt) ]
ncm = jldopen("../data/cm-nxh035.jld", "r") do file
file["database"];
end;
ncm.M0_vds = round.(ncm.M0_vds; digits = 3);
ncm.O = round.(ncm.O; digits = 3);
res = ncm[ ( (ncm.Mcm11 .== ncm.Mcm12)
.& (ncm.M0_vds .== ncm.O) )
, ["Mcm11", "Mcm12", "M0_vds", "O", "M0_id", "M1_id"] ];
################################################################################
#
modelPathₚ = "./model/ptmp90-2021-01-13T12:04:05.819/ptmp90";
modelFileₚ = modelPathₚ * ".bson";
trafoInFileₚ = modelPathₚ * ".input";
trafoOutFileₚ = modelPathₚ * ".output";
modelₚ = BSON.load(modelFileₚ);
φₚ = modelₚ[:model];
trafoXₚ = joblib.load(trafoInFileₚ);
trafoYₚ = joblib.load(trafoOutFileₚ);
paramsXₚ = modelₚ[:paramsX];
paramsYₚ = modelₚ[:paramsY];
function predictₚ(X)
return Float64.(((length(size(X)) < 2) ? [X'] : X') |>
trafoXₚ.transform |>
adjoint |> φₚ |> adjoint |>
trafoYₚ.inverse_transform |>
adjoint )
end;
function pmos(Vgs, Vds, W, L)
return predictₚ([Vds ; Vds.^2 ; Vgs ; exp.(Vgs); W ; L])
end
ϕDD = 1.2;
ϕSS = 0.0;
ϕI1 = 0.7;
ϕI2 = 0.7;
ib = 50e-6;
W₁₂ = 2e-6;
W₃₄ = 4e-6;
W₅₆ = 4e-6;
W₇₈ = 3e-6;
W₉₀ = 3e-6;
Lₘᵢₙ = 3e-7;
function kcl(ϕ)
#ϕx, ϕu, ϕw, ϕc, ϕo, ϕB = ϕ;
id1 , id2 , id3 , id4 , id5 , id6 , id7 , id8 , id9 , id0 = first.(
[ nmos((ϕI1 - ϕ[1]), (ϕ[2] - ϕ[1]), W₁₂, Lₘᵢₙ)[indexin(["id"], paramsYₙ),1]
, nmos((ϕI2 - ϕ[1]), (ϕ[3] - ϕ[1]), W₁₂, Lₘᵢₙ)[indexin(["id"], paramsYₙ),1]
, pmos((ϕDD - ϕ[2]), (ϕDD - ϕ[2]), W₃₄, Lₘᵢₙ)[indexin(["id"], paramsYₚ),1]
, pmos((ϕDD - ϕ[2]), (ϕDD - ϕ[4]), W₃₄, Lₘᵢₙ)[indexin(["id"], paramsYₚ),1]
, pmos((ϕDD - ϕ[3]), (ϕDD - ϕ[3]), W₅₆, Lₘᵢₙ)[indexin(["id"], paramsYₚ),1]
, pmos((ϕDD - ϕ[3]), (ϕDD - ϕ[5]), W₅₆, Lₘᵢₙ)[indexin(["id"], paramsYₚ),1]
, nmos(ϕ[6], ϕ[6], W₇₈, Lₘᵢₙ)[indexin(["id"], paramsYₙ),1]
, nmos(ϕ[6], ϕ[1], W₇₈, Lₘᵢₙ)[indexin(["id"], paramsYₙ),1]
, nmos(ϕ[4], ϕ[4], W₉₀, Lₘᵢₙ)[indexin(["id"], paramsYₙ),1]
, nmos(ϕ[4], ϕ[5], W₉₀, Lₘᵢₙ)[indexin(["id"], paramsYₙ),1] ]);
ΔϕDD = abs((id4 + id3) - (id5 + id6));
Δϕu = abs(id3 - id1);
Δϕw = abs(id5 - id2);
Δϕx = abs((id1 - id2) - id8);
Δϕc = abs(id4 - id9);
ΔϕB = abs(id7 - ib);
Δϕo = abs(id5 - id0);
return [ ΔϕDD, Δϕu , Δϕw , Δϕx , Δϕc , ΔϕB , Δϕo ];
end
ΔKCL = (x) -> (1 / abs(sum(kcl(x))))
ϕ₀ = [0.6, 0.6, 0.6, 0.6, 0.6, 0.6]
#jacobian(central_fdm(5,1), ΔKCL, ϕ₀) |> first
ΔKCL = grad(central_fdm(5,1), ΔKCL, ϕ₀) |> first
x = [ 0.0:0.01:2π |> collect |> adjoint
; 0.0:0.01:2π |> collect |> adjoint ]
f = (x) -> sin(x[1]) + cos(x[2])
Δf = (x) -> central_fdm(5,1)(f, x)
∇f = (x) -> grad(central_fdm(5,1), f, x) |> first
y = map(f, eachcol(x));
∇y = hcat(map(∇f, eachcol(x))...);
plot(x[1,:], y);
plot!(x[1,:], ∇y[1,:]);
plot!(x[1,:], ∇y[2,:])
plot(x, f.(x));
plot!(x, Δf.(x));
plot!(x, ∇f.(x))
ncmPath = "../data/cm-nxh035.jld";
dataFrame = jldopen((f) -> f["database"], ncmPath, "r");
####################################################
# DESIGN MODEL EVALUATION
####################################################
modelFile = "./model/ptmn90-vdsat_Vds-2021-02-15T18:35:59.555/ptmn90.bson"
model = BSON.load(modelFile);
γ = model[:model];
paramsX = model[:paramsX];
paramsY = model[:paramsY];
utX = model[:utX];
utY = model[:utY];
maskBCX = model[:maskX];
maskBCY = model[:maskY];
λ = model[:lambda];
param = model[:parameter];
term = model[:terminal];
device = model[:name];
## Reload DB ##########
inspectdr();
dataFrame = jldopen("../data/$(device).jld", "r") do file
file["database"];
end;
dataFrame.QVgs = dataFrame.Vgs.^2.0;
dataFrame.EVds = exp.(dataFrame.Vds);
dataFrame.RVbs = sqrt.(abs.(dataFrame.Vbs));
dataFrame.gmid = dataFrame.gm ./ dataFrame.id;
dataFrame.A0 = dataFrame.gm ./ dataFrame.gds;
dataFrame.Jd = dataFrame.id ./ dataFrame.W;
msk = @chain dataFrame begin
(isinf.(_) .| isnan.(_))
Matrix(_)
sum(_ ; dims = 2)
(_ .== 0)
vec()
collect()
end;
mdf = dataFrame[msk, : ];
boxCox(yᵢ; λ = 0.2) = λ != 0 ? (((yᵢ.^λ) .- 1) ./ λ) : log.(yᵢ);
coxBox(y′; λ = 0.2) = λ != 0 ? exp.(log.((λ .* y′) .+ 1) / λ) : exp.(y′);
########################
mdf.Vgs = round.(mdf.Vgs, digits = 2);
mdf.Vds = round.(mdf.Vds, digits = 2);
mdf.Vbs = round.(mdf.Vbs, digits = 2);
### γ evaluation function for prediction characteristics
function predict(X)
X[maskBCX,:] = boxCox.(abs.(X[maskBCX,:]); λ = λ);
X′ = StatsBase.transform(utX, X);
Y′ = γ(X′);
Y = StatsBase.reconstruct(utY, Y′);
Y[maskBCY,:] = coxBox.(Y[maskBCY,:]; λ = λ);
return DataFrame(Float64.(Y'), String.(paramsY))
end;
L = 300e-9;
W = 2.0e-6
Id = 50e-6;
vdsat = 0.2;
Vbs = 0.0;
Vgs = 0.6
function loss(Vds, vdsat)
x = [ L Id vdsat Vds (ℯ ^ Vds) Vbs (Vbs ^ 0.5) ]';
y = predict(x);
ΔVg = abs(y.Vgs[1] - Vgs);
ΔW = abs((y.W[1] * 10^6) - (W * 10^6));
ΔJ = abs(y.Jd[1] - (Id / W))
print("ΔVgs = $(lossVg) ; ΔW = $(lossW)\n")
return (lossVg + lossW)
end;
opt = optimize((x) -> loss(x[1], 0.2), [0.6], Newton())
opt = optimize(f, lower, upper, initial_x, Fminbox(inner_optimizer); autodiff = :forward)
Vds = opt.minimizer[1]
x = [ L Id vdsat Vds (Vds ^ 2.0) Vbs (Vbs ^ 0.5) ]';
y = predict(x)
f(x) = (1.0 - x[1])^2 + 100.0 * (x[2] - x[1]^2)^2
lower = [1.25, -2.1]
upper = [Inf, Inf]
initial_x = [2.0, 2.0]
inner_optimizer = GradientDescent()
results = optimize(f, lower, upper, initial_x, Fminbox(inner_optimizer); autodiff = :forward)