-
Notifications
You must be signed in to change notification settings - Fork 0
/
helper.py
127 lines (94 loc) · 3.73 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import pandas as pd
from jedi.api.refactoring import extract
from urlextract import URLExtract
from wordcloud import WordCloud
from collections import Counter
import emoji
import seaborn as sns
extract = URLExtract()
def fetch_stats(selected_user,df):
if selected_user!='Overall':
df = df[df['user'] == selected_user]
num_messages=df.shape[0]#fetch number of messages
words=[]
#fetch total number of words
for message in df['message']:
words.extend(message.split())
#fetch number of media messages
num_media_messages=df[df['message'] == "<Media omitted> "].shape[0]
# fetch number of links shared
links = []
for message in df['message']:
links.extend(extract.find_urls(message))
return num_messages,len(words),num_media_messages,len(links)
def most_busy_users(df):
x = df['user'].value_counts().head()
df = round((df['user'].value_counts() / df.shape[0]) * 100, 2).reset_index().rename(
columns={'index': 'name', 'user': 'percent'})
return x,df
def create_wordcloud(selected_user,df):
f = open('stopwords.txt', 'r')
stop_words = f.read()
if selected_user !='Overall':
df=df[df['user']==selected_user]
temp = df[df['user'] != 'group_notification']
temp = temp[temp['message'] != '<Media omitted> ']
def remove_stop_words(message):
y=[]
for word in message.lower().split():
if word not in stop_words:
y.append(word)
return ''.join(y)
wc=WordCloud(width=500,height=500,min_font_size=10,background_color='white')
temp['message']=temp['message'].apply(remove_stop_words)
df_wc=wc.generate(temp['message'].str.cat(sep=' '))
return df_wc
def most_common_words(selected_user,df):
f=open('stopwords.txt','r')
stop_words=f.read()
if selected_user!='Overall':
df=df[df['user'] == selected_user]
temp = df[df['user'] != 'group_notification']
temp = temp[temp['message'] != '<Media omitted> ']
words=[]
for message in temp['message']:
for word in message.lower().split():
if word not in stop_words:
words.append(word)
most_common_df=pd.DataFrame(Counter(words).most_common(25))
return most_common_df
def emoji_analy(selected_user,df):
if selected_user != 'Overall':
df = df[df['user'] == selected_user]
emojis=[]
for message in df['message']:
emojis.extend([c for c in message if c in emoji.UNICODE_EMOJI['en']])
emoji_df=pd.DataFrame(Counter(emojis).most_common((len(Counter(emojis)))))
return emoji_df
def monthly_timeline(selected_user,df):
if selected_user !='Overall':
df=df[df['user']== selected_user]
timeline= df.groupby(['year', 'month_num', 'month_name']).count()['message'].reset_index()
time=[]
for i in range(timeline.shape[0]):
time.append(timeline['month_name'][i]+ "-" + str(timeline['year'][i]))
timeline['time']=time
return timeline
def daily_timeline(selected_user,df):
if selected_user !='Overall':
df=df[df['user']== selected_user]
daily_timeline=df.groupby('only_date').count()['message'].reset_index()
return daily_timeline
def week_activity_map(selected_user,df):
if selected_user != 'Overall':
df = df[df['user'] == selected_user]
return df['day_name'].value_counts()
def month_activity_map(selected_user,df):
if selected_user != 'Overall':
df = df[df['user'] == selected_user]
return df['month_name'].value_counts()
def activity_heatmap(selected_user,df):
if selected_user != 'Overall':
df = df[df['user'] == selected_user]
user_heatmap=df.pivot_table(index='day_name', columns='period', values='message', aggfunc='count').fillna(0)
return user_heatmap