-
Notifications
You must be signed in to change notification settings - Fork 4
/
episodic.py
282 lines (213 loc) · 10.7 KB
/
episodic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import os
import yaml
import pickle
import argparse
import datetime
import scipy.signal
import numpy as np
import torch as T
import torch.nn as nn
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from collections import namedtuple
from models.a2c_dnd_lstm import A2C_DND_LSTM
from tasks.ep_two_step import EpTwoStepTask
Rollout = namedtuple('Rollout',
('state', 'action', 'reward', 'timestep', 'done', 'policy', 'value'))
class Trainer:
def __init__(self, config):
self.device = 'cpu'
self.seed = config["seed"]
self.mode = config["mode"]
T.manual_seed(config["seed"])
np.random.seed(config["seed"])
T.random.manual_seed(config["seed"])
self.env = EpTwoStepTask(config["task"])
self.agent = A2C_DND_LSTM(
self.env.feat_size,
config["agent"]["mem-units"],
self.env.num_actions,
config["agent"]["dict-len"],
config["agent"]["dict-kernel"]
).to(self.device)
self.optim = T.optim.RMSprop(self.agent.parameters(), lr=config["agent"]["lr"])
self.val_coeff = config["agent"]["value-loss-weight"]
self.entropy_coeff = config["agent"]["entropy-weight"]
self.max_grad_norm = config["agent"]["max-grad-norm"]
self.switch_p = config["task"]["swtich-prob"]
self.start_episode = 0
self.writer = SummaryWriter(log_dir=os.path.join("logs_ep", config["run-title"]))
self.save_path = os.path.join(config["save-path"], config["run-title"], config["run-title"]+"_{epi:04d}")
if config["resume"]:
print("> Loading Checkpoint")
self.start_episode = config["start-episode"]
self.agent.load_state_dict(T.load(self.save_path.format(epi=self.start_episode) + ".pt")["state_dict"])
def run_episode(self, episode):
done = False
total_reward = 0
p_action, p_reward, timestep = [0,0], 0, 0
self.agent.reset_memory()
self.agent.turn_on_encoding()
state = self.env.reset()
(h_tm1, c_tm1) = self.agent.get_init_states()
buffer = []
while not done:
# switch reward contingencies at the beginning of each episode with probability p
self.env.possible_switch(switch_p=self.switch_p)
if self.env.trial == "cued" and self.mode == "episodic":
self.agent.turn_on_retrieval()
else:
self.agent.turn_off_retrieval()
cue = self.env.get_cue()
cue = T.tensor(cue, device=self.device)
# sample action using model
x_t = (
T.tensor([state], device=self.device).float(),
T.tensor([p_action], device=self.device).float(),
T.tensor([[p_reward]], device=self.device).float(),
T.tensor([[timestep]], device=self.device).float(),
)
action_dist, values, (h_t, c_t) = self.agent(x_t, cue, (h_tm1, c_tm1))
action_cat = T.distributions.Categorical(action_dist.squeeze())
action = action_cat.sample()
action_onehot = np.eye(2)[action]
# take action and observe result
new_state, reward, done, timestep, context = self.env.step(int(action), cue.numpy())
context = T.tensor(context, device=self.device)
self.agent.save_memory(context, c_t)
# ('state', 'action', 'reward', 'timestep', 'done', 'policy', 'value')
buffer += [Rollout(
state,
action_onehot,
reward,
timestep,
done,
action_dist,
values
)]
state = new_state
p_reward = reward
p_action = action_onehot
c_tm1 = c_t
h_tm1 = h_t
total_reward += reward
# boostrap final observation
cue = self.env.get_cue()
cue = T.tensor(cue, device=self.device)
_, values, _ = self.agent((
T.tensor([state], device=self.device).float(),
T.tensor([p_action], device=self.device).float(),
T.tensor([[p_reward]], device=self.device).float(),
T.tensor([[timestep]], device=self.device).float(),
), cue, (h_t, c_t))
buffer += [Rollout(None, None, None, None, None, None, values)]
return total_reward, buffer
def a2c_loss(self, buffer, gamma, lambd=1.0):
# bootstrap discounted returns with final value estimates
_, _, _, _, _, _, last_value = buffer[-1]
returns = last_value.data
advantages = 0
all_returns = T.zeros(len(buffer)-1, device=self.device)
all_advantages = T.zeros(len(buffer)-1, device=self.device)
# run Generalized Advantage Estimation, calculate returns, advantages
for t in reversed(range(len(buffer) - 1)):
# ('state', 'action', 'reward', 'timestep', 'done', 'policy', 'value')
_, _, reward, _, done, _, value = buffer[t]
_, _, _, _, _, _, next_value = buffer[t+1]
mask = ~done
returns = reward + returns * gamma * mask
deltas = reward + next_value.data * gamma * mask - value.data
advantages = advantages * gamma * lambd * mask + deltas
all_returns[t] = returns
all_advantages[t] = advantages
batch = Rollout(*zip(*buffer))
policy = T.cat(batch.policy[:-1], dim=0).squeeze().to(self.device)
action = T.tensor(batch.action[:-1], device=self.device)
values = T.tensor(batch.value[:-1], device=self.device)
logits = (policy * action).sum(1)
policy_loss = -(T.log(logits) * all_advantages).mean()
value_loss = 0.5 * (all_returns - values).pow(2).mean()
entropy_reg = -(policy * T.log(policy)).mean()
loss = self.val_coeff * value_loss + policy_loss - self.entropy_coeff * entropy_reg
return loss
def log_reinstatment_gate(self, episode):
rt, it, ft = self.agent.get_gates()
for gate_idx in range(len(rt)):
self.writer.add_scalar(f"gates/rt/{gate_idx}", rt[gate_idx], episode)
self.writer.add_scalar(f"gates/it/{gate_idx}", it[gate_idx], episode)
self.writer.add_scalar(f"gates/ft/{gate_idx}", ft[gate_idx], episode)
self.agent.ep_lstm.reset_gate_monitor()
def train(self, max_episodes, gamma, save_interval):
total_rewards = np.zeros(max_episodes)
progress = tqdm(range(self.start_episode, max_episodes))
for episode in progress:
reward, buffer = self.run_episode(episode)
self.log_reinstatment_gate(episode)
self.optim.zero_grad()
loss = self.a2c_loss(buffer, gamma)
loss.backward()
if self.max_grad_norm > 0:
grad_norm = nn.utils.clip_grad_norm_(self.agent.parameters(), self.max_grad_norm)
self.optim.step()
total_rewards[episode] = reward
avg_reward_10 = total_rewards[max(0, episode-10):(episode+1)].mean()
avg_reward_100 = total_rewards[max(0, episode-100):(episode+1)].mean()
self.writer.add_scalar("perf/reward_t", reward, episode)
self.writer.add_scalar("perf/avg_reward_10", avg_reward_10, episode)
self.writer.add_scalar("perf/avg_reward_100", avg_reward_100, episode)
self.writer.add_scalar("losses/total_loss", loss.item(), episode)
if self.max_grad_norm > 0:
self.writer.add_scalar("losses/grad_norm", grad_norm, episode)
progress.set_description(f"Episode {episode}/{max_episodes} | Reward: {reward} | Last 10: {avg_reward_10:.4f} | Loss: {loss.item():.4f}")
if (episode+1) % save_interval == 0:
T.save({
"state_dict": self.agent.state_dict(),
"avg_reward_100": avg_reward_100,
'last_episode': episode,
}, self.save_path.format(epi=episode+1) + ".pt")
def test(self, num_episodes):
progress = tqdm(range(num_episodes))
self.env.reset_transition_count()
self.agent.eval()
total_rewards = np.zeros(num_episodes)
for episode in progress:
reward, _ = self.run_episode(episode)
total_rewards[episode] = reward
avg_reward = total_rewards[max(0, episode-10):(episode+1)].mean()
progress.set_description(f"Episode {episode}/{num_episodes} | Reward: {reward} | Last 10: {avg_reward:.4f}")
if self.mode == "incremental":
self.env.plot(self.save_path.format(epi=self.seed) + "_uncued", self.env.transition_count_uncued, "Incremental Uncued", y_lim=0)
self.env.plot(self.save_path.format(epi=self.seed) + "_cued", self.env.transition_count_cued, "Incremental Cued", y_lim=0)
elif self.mode == "episodic":
self.env.plot(self.save_path.format(epi=self.seed) + "_episodic", self.env.transition_count_episodic, "Episodic", y_lim=0)
return self.env.total_reward_cued / (num_episodes*50), self.env.total_reward_uncued / (num_episodes*50)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Paramaters')
parser.add_argument('-c', '--config', type=str, default="configs/ep_two_step.yaml", help='path of config file')
args = parser.parse_args()
with open(args.config, 'r', encoding="utf-8") as fin:
config = yaml.load(fin, Loader=yaml.FullLoader)
n_seeds = config["n-seeds"]
base_seed = config["seed"]
base_run_title = config["run-title"]
reward_cued = np.zeros(n_seeds)
reward_uncued = np.zeros(n_seeds)
for seed_idx in range(1, n_seeds + 1):
config["run-title"] = base_run_title + f"_{seed_idx}"
config["seed"] = base_seed * seed_idx
exp_path = os.path.join(config["save-path"], config["run-title"])
if not os.path.isdir(exp_path):
os.makedirs(exp_path)
out_path = os.path.join(exp_path, os.path.basename(args.config))
with open(out_path, 'w') as fout:
yaml.dump(config, fout)
print(f"> Running {config['run-title']}")
trainer = Trainer(config)
if config["train"]:
trainer.train(config["task"]["train-episodes"], config["agent"]["gamma"], config["save-interval"])
if config["test"]:
reward_cued[seed_idx-1], reward_uncued[seed_idx-1] = trainer.test(config["task"]["test-episodes"])
save_path = os.path.join(config["save-path"], "reward_cued.npy")
np.save(save_path, reward_cued)
save_path = os.path.join(config["save-path"], "reward_uncued.npy")
np.save(save_path, reward_uncued)