-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolution.py
executable file
·230 lines (194 loc) · 7.4 KB
/
solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
from collections import defaultdict
import itertools
assignments = []
rows = 'ABCDEFGHI'
cols = '123456789'
diagonals = []
def get_diagonals(rows, cols):
cols_reverse = cols[::-1]
d_one = []
d_two = []
for (row, col) in zip(rows, cols):
d_one.append(row + col)
for (row_, col_) in zip(rows, cols_reverse):
d_two.append(row_ + col_)
diagonals.append(d_one)
diagonals.append(d_two)
return diagonals
# create all boxes of the sudoku
def cross(A, B):
return [s + t for s in A for t in B]
boxes = cross(rows, cols)
row_units = [cross(r, cols) for r in rows]
# Element example:
# row_units[0] = ['A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8', 'A9']
# This is the top most row.
column_units = [cross(rows, c) for c in cols]
# Element example:
# column_units[0] = ['A1', 'B1', 'C1', 'D1', 'E1', 'F1', 'G1', 'H1', 'I1']
# This is the left most column.
square_units = [cross(rs, cs) for rs in ('ABC', 'DEF', 'GHI')
for cs in ('123', '456', '789')]
# Element example:
# square_units[0] = ['A1', 'A2', 'A3', 'B1', 'B2', 'B3', 'C1', 'C2', 'C3']
# This is the top left square.
diagonal_units = get_diagonals(rows, cols)
unitlist = row_units + column_units + square_units + diagonal_units
units = dict((s, [u for u in unitlist if s in u]) for s in boxes)
peers = dict((s, set(sum(units[s], [])) - set([s])) for s in boxes)
def assign_value(values, box, value):
"""
Please use this function to update your values dictionary!
Assigns a value to a given box. If it updates the board record it.
"""
# Don't waste memory appending actions that don't actually change any
# values
if values[box] == value:
return values
values[box] = value
if len(value) == 1:
assignments.append(values.copy())
return values
def naked_twins(values):
"""Eliminate values using the naked twins strategy.
If two cells in a group contain an identical pair of candidates and only those two candidates, then no other cells in that group could be those values.
These 2 candidates can be excluded from other cells in the group.
Args:
values(dict): a dictionary of the form {'box_name': '123456789', ...}
Returns:
the values dictionary with the naked twins eliminated from peers.
"""
# step one: find naked twins in rowunits, columnunits or squareunits
for unit in unitlist:
two_chars = {}
for box in unit:
# find boxes with two values:
if len(values[box]) == 2:
two_chars[box] = values[box]
# iterate over pairs and find twins
twins = defaultdict(list)
for key, value in two_chars.items():
twins[value].append(key)
naked_twins = {}
for key, value in twins.items():
if len(value) == 2:
naked_twins[key] = value
if len(naked_twins) == 0:
pass
if len(naked_twins) >= 2:
return False
# step two: find boxes containing elements from the twin pairs
else:
# key is the twin value, the values are the box numbers
for key, value in naked_twins.items():
for box in unit:
if values[box] != key:
for element in key:
# step three: remove elements
if element in values[box]:
values[box] = values[box].replace(element, '')
return values
def grid_values(grid):
"""
Convert grid into a dict of {square: char} with '123456789' for empties.
Args:
grid(string) - A grid in string form.
Returns:
A grid in dictionary form
Keys: The boxes, e.g., 'A1'
Values: The value in each box, e.g., '8'. If the box has no value, then the value will be '123456789'.
"""
# transform string represantion to a dictionary
# create the keys for the sudoku boxes
# set up the sudoku grid
grid_dict = dict(zip(boxes, grid))
for key, value in grid_dict.items():
if value == '.':
grid_dict[key] = '123456789'
return grid_dict
def display(values):
"""
Display the values as a 2-D grid.
Args:
values(dict): The sudoku in dictionary form
"""
width = 1 + max(len(values[s]) for s in boxes)
line = '+'.join(['-' * (width * 3)] * 3)
for r in rows:
print(''.join(values[r + c].center(width) + ('|' if c in '36' else '')
for c in cols))
if r in 'CF':
print(line)
return
def eliminate(values):
# iterate over peers and remove number that is already solved
solved_values = [box for box in values.keys() if len(values[box]) == 1]
for box in solved_values:
digit = values[box]
for peer in peers[box]:
values[peer] = values[peer].replace(digit, '')
return values
def only_choice(values):
# remove all other possible values if there is only one choice for the unit
for unit in unitlist:
for digit in '123456789':
dplaces = [box for box in unit if digit in values[box]]
if len(dplaces) == 1:
values[dplaces[0]] = digit
return values
def reduce_puzzle(values):
stalled = False
while not stalled:
# Check how many boxes have a determined value
solved_values_before = len(
[box for box in values.keys() if len(values[box]) == 1])
eliminate(values)
naked_twins(values)
#only_choice(values)
# Check how many boxes have a determined value, to compare
solved_values_after = len(
[box for box in values.keys() if len(values[box]) == 1])
# If no new values were added, stop the loop.
stalled = solved_values_before == solved_values_after
# Sanity check, return False if there is a box with zero available
# values:
if len([box for box in values.keys() if len(values[box]) == 0]):
return False
return values
def search(values):
# First, reduce the puzzle using the previous function
values = reduce_puzzle(values)
if values is False:
return False
if all(len(values[s]) == 1 for s in boxes):
# solved
return values
# Choose one of the unfilled squares with the fewest possibilities
n, s = min((len(values[s]), s) for s in boxes if len(values[s]) > 1)
# Now use recurrence to solve each one of the resulting sudokus, and
for value in values[s]:
new_sudoku = values.copy()
new_sudoku[s] = value
attempt = search(new_sudoku)
if attempt:
return attempt
def solve(grid):
"""
Find the solution to a Sudoku grid.
Args:
grid(string): a string representing a sudoku grid.
Example: '2.............62....1....7...6..8...3...9...7...6..4...4....8....52.............3'
Returns:
The dictionary representation of the final sudoku grid. False if no solution exists.
"""
return search(grid_values(grid))
if __name__ == '__main__':
diag_sudoku_grid = '2.............62....1....7...6..8...3...9...7...6..4...4....8....52.............3'
solve(diag_sudoku_grid)
try:
from visualize import visualize_assignments
visualize_assignments(assignments)
except SystemExit:
pass
except:
print('We could not visualize your board due to a pygame issue. Not a problem! It is not a requirement.')