-
Notifications
You must be signed in to change notification settings - Fork 0
/
Double circuit 3 phase transmission line.m
265 lines (220 loc) · 9.55 KB
/
Double circuit 3 phase transmission line.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
%FORMULAE:
%GMD = (DAB . DBC . DCA.)^(1/3)
%Where DAB = (Dab . Dab' . Da'b . Da'b')1/4 similarly DBC and DCA.
%GMRa = ?(Daa' . r')
%GMRb = ?(Dbb' . r')
%GMRc = ?(Dcc' . r')
%GMRL = (GMRa . GMRb . GMRc)^1/3
%The inductance per phase in millihenries per kilometers is given by
%L = 0.2 ln GMD/GMRL
%%The capacitance per phase in microfarads per kilometers is given by
%C =0.0556/(ln GMD/GMRC)
fprintf('DOUBLE CIRCUIT THREE PHASE TRANSPOSED TRANSMISSION LINE PARAMETERS CALCULATION (TWO BUNDLE)');
%fprintf('\n\t\t Choose the type of conductor from the list below:');
%fprintf('\n1) Partridge 11) Ostrich\n2)Merlin 12) Linnet \n3) Oriole 13) Chickadee\n4) Ibis 14) Flicker\n5) Hawk 15) Hen\n6) Osprey 16) Parakeet\n7) Dove 17) Rook \n8) Grosbeak 18) Drake Tern \n9) Rail 19) Bluebird \n10) Blue jay 20) Kiwi ');
%$o=input('\n-Enter your option:');
%switch(o);
%case 1
% fprintf('\n\n * DISTANCE MEASUREMENTS :');
% D=
% GMR=
%case 2
% D=
% GMR=
%case 3
% D=
% GMR=
%end
D=0.044069;
GMR=0.017374;
fprintf('\n\t CHOOSE THE DESIRED CIRCUIT ARRANGEMENT:');
fprintf('\n-------------------------------------------------------');% Representation of both the transmision line circuit.
fprintf('\n\n CIRCUIT ARRANGEMENT 1 \t\t\t\t CIRCUIT ARRANGEMENT 2\n')
fprintf('\n\n [a1] ---<x>--- [c2]\t\t\t\t[a1] ---<x>--- [a2]');
fprintf('\n |\t\t\t\t |\t\t\t\t\t|\t\t\t\t |');
fprintf('\n |\t\t\t\t |\t\t\t\t\t|\t\t\t\t |');
fprintf('\n<p>\t\t\t\t |\t\t\t\t\t<p>\t\t\t\t |');
fprintf('\n |\t\t\t\t |\t\t\t\t\t|\t\t\t\t |');
fprintf('\n [b1] ---<y>--- [b2]\t\t\t\t[b1] ---<y>--- [b2]');
fprintf('\n |\t\t\t\t |\t\t\t\t\t|\t\t\t\t |');
fprintf('\n |\t\t\t\t |\t\t\t\t\t|\t\t\t\t |');
fprintf('\n<q>\t\t\t\t |\t\t\t\t\t<q>\t\t\t\t |');
fprintf('\n |\t\t\t\t |\t\t\t\t\t|\t\t\t\t |');
fprintf('\n [c1] ---<z>--- [a2]\t\t\t\t[c1] ---<z>--- [c2]\n\t');
x1=input('\n Wish to choose option [1 (or) 2] ? ');
switch(x1)
case 1
fprintf('\n\n You have chose option 1.Enter the value of following parameters in METERS(m) only');
%Asking for the input parameters
e=input('\n\t -> Its a 2 bundle conductor. Enter the Bundle spacing: ');
y1=input('\n\n -> Horizontal Distance of separation (x): ');
y2=input('\n -> Horizontal Distance of separation (y): ');
y3=input('\n -> Horizontal Distance of separation (z): ');
y4=input('\n -> Vertical Distance of separation (p): ');
y5=input('\n -> Vertical Distance of separation (q): ');
if(y2>y1)
y6=(y2-y1)/2;
else
y6=(y1-y2)/2;
end
if(y3>y2)
y7=(y3-y2)/2;
else
y7=(y2-y3)/2;
end
if(y1>y3)
y8=(y1-y3)/2;
else
y8=(y3-y1)/2;
end
%Calculating individual distance between every conductor
z1=(y4^2+(y6)^2)^(1/2);
z2=((y4+y5)^2+(y8)^2)^(1/2);
z3=((y4+y5)^2+(y3-y8)^2)^(1/2);
z4=((y2-y6)^2+(y4)^2)^(1/2);
z5=(y7^2+(y5)^2)^(1/2);
z6=((y2-y7)^2+(y4)^2)^(1/2);
ckt2 = [
' a1 c2 '
' Circuit Arrangement .O-------------O '
' -------------------- . | . . |. '
' . | . | . '
' b1 | . . | b2 '
' O-------------------O '
' . | . . | . '
' . | . |. '
' c1| . . a2| '
' O-----------O '];
disp(ckt2)
fprintf('\n\n * DISTANCE MEASUREMENTS :');
fprintf('\n\t|---------------------------|--------------|');
fprintf('\n\t| 1) D(a1b1,b1a1,b2c2,c2b2) |: %f m |',z1);
fprintf('\n\t| 2) D(a1c1,c1a1,a2c2,c2a2) |: %f m |',z2);
fprintf('\n\t| 3) D(a1a2,a2a1,c1c2,c2c1) |: %f m |',z3);
fprintf('\n\t| 4) D(a1b2,b2a1,b1c2,c2b1) |: %f m |',z4);
fprintf('\n\t| 5) D(c1b1,b1c1,b2a2,a2b2) |: %f m |',z5);
fprintf('\n\t| 6) D(a2b1,b1a2,b2c1,c1b2) |: %f m |',z6);
fprintf('\n\t| 7) D(a1c2,c2a1) |: %f m |',y1);
fprintf('\n\t| 8) D(b1b2,b2b1) |: %f m |',y2);
fprintf('\n\t| 1) D(c1a2,a2c1) |: %f m |',y3);
fprintf('\n\t|___________________________|______________|');
n1=(z1*z4*z4*z5)^(1/4);
n2=(z1*z6*z6*z5)^(1/4);
n3=(z2*z2*y1*y3)^(1/4);
v=(n1*n2*n3)^(1/3);
fprintf('\n *GMD CALCULATION:');
fprintf('\n\t |-----------------------------------------------|');
fprintf('\n\t | 1)D(phase AB): %f m |',n1);
fprintf('\n\t | 2)D(phase BC): %f m |',n2);
fprintf('\n\t | 3)D(phase AC): %f m |',n3);
fprintf('\n\t | Geometric Mean Distance (GMD) = <%f>m |',v);
fprintf('\n\t |_______________________________________________|');
r1=(GMR*e)^(1/2);
r2=((D/2)*e)^(1/2);
g1=(r1*z3)^(1/2);
g2=(r1*z3)^(1/2);
g3=(r1*y2)^(1/2);
h1=(r2*z3)^(1/2);
h2=(r2*z3)^(1/2);
h3=(r2*y2)^(1/2);
GMRL=(g1*g2*g3)^(1/3);
GMRC=(h1*h2*h3)^(1/3);
fprintf('\n *GMR CALCULATION:');
fprintf('\n\t|---------------------------------------------------------|');
fprintf('\n\t|Geometric Mean Radius for Inductor[GMRL] =[%f] m |',GMRL);
fprintf('\n\t|Geometric Mean Radius for Capacitor[GMRC] =[%f] m |',GMRC);
fprintf('\n\t|_________________________________________________________|');
L=log(v/GMRL)*0.2;
fprintf('\n\n\t {INDUCTANCE (L)} =[%f] mH/km',L);
C=0.0556/(log(v/GMRC));
fprintf('\n\t {CAPACITANCE (C)} =[%f] µF/km',C);
end
switch(x1)
case 2
fprintf('\n\n You have chose option 1.Enter the value of following parameters in METERS(m) only');
e=input('\n\t ->.Its a double bunded conductor. Enter the Bundle spacing: ');
y1=input('\n\n -> Horizontal Distance of separation (x): ');
y2=input('\n -> Horizontal Distance of separation (y): ');
y3=input('\n -> Horizontal Distance of separation (z): ');
y4=input('\n -> Vertical Distance of separation (p): ');
y5=input('\n -> Vertical Distance of separation (q): ');
if(y2>y1)
y6=(y2-y1)/2;
else
y6=(y1-y2)/2;
end
if(y3>y2)
y7=(y3-y2)/2;
else
y7=(y2-y3)/2;
end
if(y1>y3)
y8=(y1-y3)/2;
else
y8=(y3-y1)/2;
end
z1=(y4^2+(y6)^2)^(1/2);
z2=((y4+y5)^2+(y8)^2)^(1/2);
z3=((y4+y5)^2+(y3-y8)^2)^(1/2);
z4=((y2-y6)^2+(y4)^2)^(1/2);
z5=(y7^2+(y5)^2)^(1/2);
z6=((y2-y7)^2+(y4)^2)^(1/2);
ckt2 = [
' a1 a2 '
' Circuit Arrangement 2 .O-------------O '
' -------------------- . | . . |. '
' . | . | . '
' b1 | . . | b2 '
' O-------------------O '
' . | . . | . '
' . | . |. '
' c1| . . c2| '
' O-----------O '];
disp(ckt2);
fprintf('\n\n * DISTANCE MEASUREMENTS :');
fprintf('\n\t|---------------------------|--------------|');
fprintf('\n\t| 1) D(a1b1,b1a1,b2a2,a2b2) |: %f m |',z1);
fprintf('\n\t| 2) D(a1c1,c1a1,a2c2,c2a2) |: %f m |',z2);
fprintf('\n\t| 3) D(a1c2,c2a1,c1a2,a2c1) |: %f m |',z3);
fprintf('\n\t| 4) D(a1b2,b2a1,b1a2,a2b1) |: %f m |',z4);
fprintf('\n\t| 5) D(c1b1,b1c1,b2c2,c2b2) |: %f m |',z5);
fprintf('\n\t| 6) D(c2b1,b1c2,b2c1,c1b2) |: %f m |',z6);
fprintf('\n\t| 7) D(a1a2,a2a1) |: %f m |',y1);
fprintf('\n\t| 8) D(b1b2,b2b1) |: %f m |',y2);
fprintf('\n\t| 1) D(c1c2,c2c1) |: %f m |',y3);
fprintf('\n\t|___________________________|______________|');
n1=(z1*z1*z4*z4)^(1/4);
n2=(z5*z4*z4*z5)^(1/4);
n3=(z2*z2*z3*z3)^(1/4);
v=(n1*n2*n3)^(1/3);
fprintf('\n *GMD CALCULATION:');
fprintf('\n\t |-----------------------------------------------|');
fprintf('\n\t | 1)D(phase AB): %f m |',n1);
fprintf('\n\t | 2)D(phase BC): %f m |',n2);
fprintf('\n\t | 3)D(phase AC): %f m |',n3);
fprintf('\n\t | Geometric Mean Distance (GMD) = <%f>m |',v);
fprintf('\n\t |_______________________________________________|');
r1=(GMR*e)^(1/2);
r2=((D/2)*e)^(1/2);
g1=(r1*y1)^(1/2);
g2=(r1*y2)^(1/2);
g3=(r1*y3)^(1/2);
h1=(r2*y1)^(1/2);
h2=(r2*y2)^(1/2);
h3=(r2*y3)^(1/2);
GMRL=(g1*g2*g3)^(1/3);
GMRC=(h1*h2*h3)^(1/3);
fprintf('\n *GMR CALCULATION:');
fprintf('\n\t|---------------------------------------------------------|');
fprintf('\n\t|Geometric Mean Radius for Inductor[GMRL] =[%f] m |',GMRL);
fprintf('\n\t|Geometric Mean Radius for Capacitor[GMRC] =[%f] m |',GMRC);
fprintf('\n\t|_________________________________________________________|');
L=log(v/GMRL)*0.2;
fprintf('\n\n\t {INDUCTANCE (L)} =[%f] mH/km',L);
C=0.0556/(log(v/GMRC));
fprintf('\n\t {CAPACITANCE (C)} =[%f] µF/km',C);
end
switch(x1)
otherwise
fprintf('\n\tEnter proper input!!');
end