-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
94 lines (79 loc) · 3.02 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
from langchain_community.document_loaders import PyPDFLoader, DirectoryLoader
from langchain.prompts import PromptTemplate
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.llms import CTransformers
from langchain.chains import RetrievalQA
import chainlit as cl
DB_FAISS_PATH = 'vectorstore/db_faiss'
custom_prompt_template = """Use the following pieces of information to answer the user's question.
If you don't know the answer, just say that you don't know, don't try to make up an answer.
Context: {context}
Question: {question}
Only return the helpful answer below and nothing else.
Helpful answer:
"""
def set_custom_prompt():
"""
Prompt template for QA retrieval for each vectorstore
"""
prompt = PromptTemplate(template=custom_prompt_template,
input_variables=['context', 'question'])
return prompt
#Retrieval QA Chain
def retrieval_qa_chain(llm, prompt, db):
qa_chain = RetrievalQA.from_chain_type(llm=llm,
chain_type='stuff',
retriever=db.as_retriever(search_kwargs={'k': 2}),
return_source_documents=True,
chain_type_kwargs={'prompt': prompt}
)
return qa_chain
#Loading the model
def load_llm():
llm = CTransformers(
model = "TheBloke/Llama-2-7B-Chat-GGML",
model_type="llama",
max_new_tokens = 512,
temperature = 0.5
)
return llm
#QA Model Function
def qa_bot():
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={'device': 'cpu'})
db = FAISS.load_local(DB_FAISS_PATH, embeddings,allow_dangerous_deserialization=True)
llm = load_llm()
qa_prompt = set_custom_prompt()
qa = retrieval_qa_chain(llm, qa_prompt, db)
return qa
#output function
def final_result(query):
qa_result = qa_bot()
response = qa_result({'query': query})
return response
#chainlit code
@cl.on_chat_start
async def start():
chain = qa_bot()
msg = cl.Message(content="Starting the bot...")
await msg.send()
msg.content = "Hi, Welcome to Budget Buddy. What's on your mind???"
await msg.update()
cl.user_session.set("chain", chain)
@cl.on_message
async def main(message: cl.Message):
chain = cl.user_session.get("chain")
cb = cl.AsyncLangchainCallbackHandler(
stream_final_answer=True, answer_prefix_tokens=["FINAL", "ANSWER"]
)
cb.answer_reached = True
res = await chain.acall(message.content, callbacks=[cb])
answer = res["result"]
sources = res["source_documents"]
citations=[f"{doc.metadata['source']}(page{doc.metadata['page']})" for doc in sources]
if sources:
answer += f"\nSources:\n" + "\n".join(citations)
else:
answer += "\nNo sources found"
await cl.Message(content=answer).send()