-
Notifications
You must be signed in to change notification settings - Fork 129
/
Copy pathsplit.py
executable file
·97 lines (78 loc) · 3.21 KB
/
split.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# -*- coding:utf-8 -*-
# 数据集划分,训练集,测试集,验证集
from __future__ import division
import xml.etree.ElementTree as ET
import random
import os
def base_txt():
saveBasePath = r"./VOC2007/ImageSets" # txt文件保存目录
total_xml = os.listdir(r'./VOC2007/Annotations') # 获取标注文件(file_name.xml)
# 划分数据集为(训练,验证,测试集 = 49%,20%,30%)
val_percent = 0.2 # 可以自己修改
test_percent = 0.2
trainval_percent = 0.8
# print(trainval_percent)
tv = int(len(total_xml) * trainval_percent)
#tr = int(len(total_xml) * train_percent)
ta = int(tv * val_percent)
tr = int(tv -ta)
tt = int(len(total_xml) * test_percent)
# 打乱训练文件(洗牌)
trainval = random.sample(range(len(total_xml)), tv)
train = random.sample(trainval, tr)
print("训练集图片数量:", tr)
print("验证集图片数量:", ta)
print("测试集图片数量:", tt)
# with open('/tmp/VOC2007/split.txt', 'w', encoding='utf-8') as f:
# f.write(str(val_percent))
ftrainval = open(os.path.join(saveBasePath, 'Main/trainval.txt'), 'w')
ftest = open(os.path.join(saveBasePath, 'Main/test.txt'), 'w')
ftrain = open(os.path.join(saveBasePath, 'Main/train.txt'), 'w')
fval = open(os.path.join(saveBasePath, 'Main/val.txt'), 'w')
for i in range(len(total_xml)): # 遍历所有 file_name.xml 文件
name = total_xml[i][:-4] + '\n' # 获取 file_name
if i in trainval:
ftrainval.write(name)
if i in train:
ftrain.write(name)
else:
fval.write(name)
else:
ftest.write(name)
ftrainval.close()
ftrain.close()
fval.close()
ftest.close()
base_txt()
fi = open('./data/classes/voc.names', 'r') # 按文件夹里面的文件修改好
txt = fi.readlines()
voc_class = []
for w in txt:
w = w.replace('\n', '')
voc_class.append(w)
print('数据集里面的类别为: ', voc_class)
classes = voc_class
def convert_annotation(year, image_id, list_file):
in_file = open('./VOC%s/Annotations/%s.xml'%(year, image_id))
tree=ET.parse(in_file)
root = tree.getroot()
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult)==1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (int(xmlbox.find('xmin').text), int(xmlbox.find('ymin').text), int(xmlbox.find('xmax').text), int(xmlbox.find('ymax').text))
list_file.write(" " + ",".join([str(a) for a in b]) + ',' + str(cls_id))
wd = '.'
sets=[ ('2007', 'train'), ('2007', 'val'), ('2007', 'test')]
# wd = getcwd()
for year, image_set in sets:
image_ids = open('./VOC%s/ImageSets/Main/%s.txt'%(year, image_set)).read().strip().split()
list_file = open('%s_%s.txt'%(year, image_set), 'w')
for image_id in image_ids:
list_file.write('%s/VOC%s/JPEGImages/%s.jpg'%(wd, year, image_id))
convert_annotation(year, image_id, list_file)
list_file.write('\n')
list_file.close()