-
Notifications
You must be signed in to change notification settings - Fork 129
/
Copy pathtrain_mobilenetv2.py
190 lines (161 loc) · 10.3 KB
/
train_mobilenetv2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#! /usr/bin/env python
# coding=utf-8
import os
import time
import shutil
import numpy as np
import tensorflow as tf
import core.utils as utils
from tqdm import tqdm
from core.dataset import Dataset
from core.yolov3_mobilenetv2 import YOLOV3
from core.config import cfg
class YoloTrain(object):
def __init__(self): # 从config文件
self.anchor_per_scale = cfg.YOLO.ANCHOR_PER_SCALE
self.classes = utils.read_class_names(cfg.YOLO.CLASSES)
self.num_classes = len(self.classes)
self.learn_rate_init = cfg.TRAIN.LEARN_RATE_INIT
self.learn_rate_end = cfg.TRAIN.LEARN_RATE_END
self.first_stage_epochs = cfg.TRAIN.FISRT_STAGE_EPOCHS
self.second_stage_epochs = cfg.TRAIN.SECOND_STAGE_EPOCHS
self.warmup_periods = cfg.TRAIN.WARMUP_EPOCHS
self.initial_weight = cfg.TRAIN.INITIAL_WEIGHT
self.time = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime(time.time()))
self.moving_ave_decay = cfg.YOLO.MOVING_AVE_DECAY
self.max_bbox_per_scale = 150
self.train_logdir = "./data/log/train"
self.trainset = Dataset('train')
self.testset = Dataset('test')
self.steps_per_period = len(self.trainset)
self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
with tf.name_scope('define_input'):
self.input_data = tf.placeholder(dtype=tf.float32, name='input_data')
self.label_sbbox = tf.placeholder(dtype=tf.float32, name='label_sbbox')
self.label_mbbox = tf.placeholder(dtype=tf.float32, name='label_mbbox')
self.label_lbbox = tf.placeholder(dtype=tf.float32, name='label_lbbox')
self.true_sbboxes = tf.placeholder(dtype=tf.float32, name='sbboxes')
self.true_mbboxes = tf.placeholder(dtype=tf.float32, name='mbboxes')
self.true_lbboxes = tf.placeholder(dtype=tf.float32, name='lbboxes')
self.trainable = tf.placeholder(dtype=tf.bool, name='training')
with tf.name_scope("define_loss"):
self.model = YOLOV3(self.input_data, self.trainable)
self.net_var = tf.global_variables()
self.giou_loss, self.conf_loss, self.prob_loss = self.model.compute_loss(
self.label_sbbox, self.label_mbbox, self.label_lbbox,
self.true_sbboxes, self.true_mbboxes, self.true_lbboxes)
self.loss = self.giou_loss + self.conf_loss + self.prob_loss
with tf.name_scope('learn_rate'):
self.global_step = tf.Variable(1.0, dtype=tf.float64, trainable=False, name='global_step')
warmup_steps = tf.constant(self.warmup_periods * self.steps_per_period,
dtype=tf.float64, name='warmup_steps')
train_steps = tf.constant( (self.first_stage_epochs + self.second_stage_epochs)* self.steps_per_period,
dtype=tf.float64, name='train_steps')
self.learn_rate = tf.cond(
pred=self.global_step < warmup_steps,
true_fn=lambda: self.global_step / warmup_steps * self.learn_rate_init,
false_fn=lambda: self.learn_rate_end + 0.5 * (self.learn_rate_init - self.learn_rate_end) *
(1 + tf.cos(
(self.global_step - warmup_steps) / (train_steps - warmup_steps) * np.pi))
)
global_step_update = tf.assign_add(self.global_step, 1.0)
'''
warmup_steps作用:
神经网络在刚开始训练的过程中容易出现loss=NaN的情况,为了尽量避免这个情况,因此初始的学习率设置得很低
但是这又使得训练速度变慢了。因此,采用逐渐增大的学习率,从而达到既可以尽量避免出现nan,又可以等训练过程稳定了再增大训练速度的目的。
'''
# with tf.name_scope('loader_and_saver'):
# self.loader = tf.train.Saver(self.net_var)
# self.saver = tf.train.Saver(tf.global_variables(), max_to_keep=10)
with tf.name_scope("define_weight_decay"):
moving_ave = tf.train.ExponentialMovingAverage(self.moving_ave_decay).apply(tf.trainable_variables())
# 指定需要恢复的参数。层等信息, 位置提前,减少模型体积。
with tf.name_scope('loader_and_saver'):
variables_to_restore = [v for v in self.net_var if v.name.split('/')[0] not in ['conv_sbbox', 'conv_mbbox', 'conv_lbbox']]
self.loader = tf.train.Saver(variables_to_restore)
self.saver = tf.train.Saver(tf.global_variables(), max_to_keep=1)
with tf.name_scope("define_first_stage_train"):
self.first_stage_trainable_var_list = []
for var in tf.trainable_variables():
var_name = var.op.name
var_name_mess = str(var_name).split('/')
if var_name_mess[0] in ['conv_sbbox', 'conv_mbbox', 'conv_lbbox']:
self.first_stage_trainable_var_list.append(var)
first_stage_optimizer = tf.train.AdamOptimizer(self.learn_rate).minimize(self.loss,
var_list=self.first_stage_trainable_var_list)
with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
with tf.control_dependencies([first_stage_optimizer, global_step_update]):
with tf.control_dependencies([moving_ave]):
self.train_op_with_frozen_variables = tf.no_op()
with tf.name_scope("define_second_stage_train"):
second_stage_trainable_var_list = tf.trainable_variables()
second_stage_optimizer = tf.train.AdamOptimizer(self.learn_rate).minimize(self.loss,
var_list=second_stage_trainable_var_list)
with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
with tf.control_dependencies([second_stage_optimizer, global_step_update]):
with tf.control_dependencies([moving_ave]):
self.train_op_with_all_variables = tf.no_op()
with tf.name_scope('summary'):
tf.summary.scalar("learn_rate", self.learn_rate)
tf.summary.scalar("giou_loss", self.giou_loss)
tf.summary.scalar("conf_loss", self.conf_loss)
tf.summary.scalar("prob_loss", self.prob_loss)
tf.summary.scalar("total_loss", self.loss)
logdir = "./data/log/"
if os.path.exists(logdir): shutil.rmtree(logdir)
os.mkdir(logdir)
self.write_op = tf.summary.merge_all()
self.summary_writer = tf.summary.FileWriter(logdir, graph=self.sess.graph)
def train(self):
self.sess.run(tf.global_variables_initializer())
try:
print('=> Restoring weights from: %s ... ' % self.initial_weight)
self.loader.restore(self.sess, self.initial_weight)
except:
# print('=> %s does not exist !!!' % self.initial_weight)
print('=> Mobilenetv2 backbone无法加载此预训练模型,从头开始训练 ...')
self.first_stage_epochs = 0
# 阶段学习率
for epoch in range(1, 1+self.first_stage_epochs+self.second_stage_epochs):
if epoch <= self.first_stage_epochs:
train_op = self.train_op_with_frozen_variables
else:
train_op = self.train_op_with_all_variables
# tqdm is a visualization tool that displays an Iterable object in a progree bar
pbar = tqdm(self.trainset)
train_epoch_loss, test_epoch_loss = [], []
for train_data in pbar:
_, summary, train_step_loss, global_step_val = self.sess.run(
[train_op, self.write_op, self.loss, self.global_step],feed_dict={
self.input_data: train_data[0],
self.label_sbbox: train_data[1],
self.label_mbbox: train_data[2],
self.label_lbbox: train_data[3],
self.true_sbboxes: train_data[4],
self.true_mbboxes: train_data[5],
self.true_lbboxes: train_data[6],
self.trainable: True,
})
train_epoch_loss.append(train_step_loss)
self.summary_writer.add_summary(summary, global_step_val)
pbar.set_description("train loss: %.2f" %train_step_loss)
for test_data in self.testset:
test_step_loss = self.sess.run( self.loss, feed_dict={
self.input_data: test_data[0],
self.label_sbbox: test_data[1],
self.label_mbbox: test_data[2],
self.label_lbbox: test_data[3],
self.true_sbboxes: test_data[4],
self.true_mbboxes: test_data[5],
self.true_lbboxes: test_data[6],
self.trainable: False,
})
test_epoch_loss.append(test_step_loss)
train_epoch_loss, test_epoch_loss = np.mean(train_epoch_loss), np.mean(test_epoch_loss)
ckpt_file = "./checkpoint/yolov3_mobilenetv2.ckpt" # 固定模型名字
log_time = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
print("=> Epoch: %2d Time: %s Train loss: %.2f Test loss: %.2f Saving %s ..."
%(epoch, log_time, train_epoch_loss, test_epoch_loss, ckpt_file))
self.saver.save(self.sess, ckpt_file, global_step=epoch)
if __name__ == '__main__':
YoloTrain().train()