-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
70 lines (57 loc) · 2.02 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from data_generation import DataGeneration as dg
from model import ConvAutoencoder as ca
import torch
import numpy as np
import cv2
import os
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--dset', type=int, help='Please put 0,1,2,3 or 4')
args = parser.parse_args()
test_num = args.dset
history = 8
offset = 1
complete_dset = [0,1,2,3,4]
train_set = []
test_set = []
for d in complete_dset:
if d == test_num:
test_set.append(d)
else:
train_set.append(d)
if len(test_set) == 0:
raise Exception('dset must be 0, 1, 2, 3, or 4!')
data_generator = dg(history, offset, train_set, test_set)
cuda = torch.device('cuda:0')
autoencoder = ca()
autoencoder = autoencoder.to(cuda)
batch_size = 1
num_epoch = 200
num_data = data_generator.num_train_data
print(num_data)
criterion = torch.nn.BCELoss()
optimizer = torch.optim.Adam(autoencoder.parameters(), lr=0.00001)
for epoch in range(num_epoch + 1):
train_loss = 0.0
for i in range(num_data):
print([i, num_data], end='\r')
inputs_tensor = []
outputs_tensor = []
for b in range(batch_size):
inputs, outputs = data_generator.generate_sample()
inputs = np.transpose(inputs, (3, 0, 1, 2))
outputs = np.transpose(outputs, (3, 0, 1, 2))
inputs_tensor.append(inputs)
outputs_tensor.append(outputs)
inputs_tensor = torch.tensor(np.array(inputs_tensor), dtype=torch.float32, device=cuda)
outputs_tensor = torch.tensor(np.array(outputs_tensor), dtype=torch.float32, device=cuda)
optimizer.zero_grad()
outputs_model = autoencoder(inputs_tensor)
loss = criterion(outputs_model, outputs_tensor)
loss.backward()
optimizer.step()
train_loss += loss.item() * batch_size
train_loss = train_loss / num_data
print('Epoch: {} \tTraining Loss: {:.6f}'.format(epoch, train_loss))
if epoch % 10 == 0:
torch.save(autoencoder.state_dict(), 'checkpoints/model_fpsfix_{}.pth'.format(test_num))