-
Notifications
You must be signed in to change notification settings - Fork 16
/
models.py
882 lines (724 loc) · 31.2 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_sparse import SparseTensor, matmul
from torch_geometric.nn import GCNConv, SGConv, GATConv, JumpingKnowledge, APPNP, GCN2Conv, MessagePassing
from torch_geometric.nn.conv.gcn_conv import gcn_norm
import numpy as np
import scipy.sparse
from tqdm import tqdm
class LINKX(nn.Module):
""" our LINKX method with skip connections
a = MLP_1(A), x = MLP_2(X), MLP_3(sigma(W_1[a, x] + a + x))
"""
def __init__(self, in_channels, hidden_channels, out_channels, num_layers, num_nodes, dropout=.5, cache=False, inner_activation=False, inner_dropout=False, init_layers_A=1, init_layers_X=1):
super(LINKX, self).__init__()
self.mlpA = MLP(num_nodes, hidden_channels, hidden_channels, init_layers_A, dropout=0)
self.mlpX = MLP(in_channels, hidden_channels, hidden_channels, init_layers_X, dropout=0)
self.W = nn.Linear(2*hidden_channels, hidden_channels)
self.mlp_final = MLP(hidden_channels, hidden_channels, out_channels, num_layers, dropout=dropout)
self.in_channels = in_channels
self.num_nodes = num_nodes
self.A = None
self.inner_activation = inner_activation
self.inner_dropout = inner_dropout
def reset_parameters(self):
self.mlpA.reset_parameters()
self.mlpX.reset_parameters()
self.W.reset_parameters()
self.mlp_final.reset_parameters()
def forward(self, data):
m = data.graph['num_nodes']
feat_dim = data.graph['node_feat']
row, col = data.graph['edge_index']
row = row-row.min()
A = SparseTensor(row=row, col=col,
sparse_sizes=(m, self.num_nodes)
).to_torch_sparse_coo_tensor()
xA = self.mlpA(A, input_tensor=True)
xX = self.mlpX(data.graph['node_feat'], input_tensor=True)
x = torch.cat((xA, xX), axis=-1)
x = self.W(x)
if self.inner_dropout:
x = F.dropout(x)
if self.inner_activation:
x = F.relu(x)
x = F.relu(x + xA + xX)
x = self.mlp_final(x, input_tensor=True)
return x
class LINK(nn.Module):
""" logistic regression on adjacency matrix """
def __init__(self, num_nodes, out_channels):
super(LINK, self).__init__()
self.W = nn.Linear(num_nodes, out_channels)
self.num_nodes = num_nodes
def reset_parameters(self):
self.W.reset_parameters()
def forward(self, data):
N = data.graph['num_nodes']
edge_index = data.graph['edge_index']
if isinstance(edge_index, torch.Tensor):
row, col = edge_index
row = row-row.min() # for sampling
A = SparseTensor(row=row, col=col, sparse_sizes=(N, self.num_nodes)).to_torch_sparse_coo_tensor()
elif isinstance(edge_index, SparseTensor):
A = edge_index.to_torch_sparse_coo_tensor()
logits = self.W(A)
return logits
class LINK_Concat(nn.Module):
""" concate A and X as joint embeddings i.e. MLP([A;X])"""
def __init__(self, in_channels, hidden_channels, out_channels, num_layers, num_nodes, dropout=.5, cache=True):
super(LINK_Concat, self).__init__()
self.mlp = MLP(in_channels + num_nodes, hidden_channels, out_channels, num_layers, dropout=dropout)
self.in_channels = in_channels
self.cache = cache
self.x = None
def reset_parameters(self):
self.mlp.reset_parameters()
def forward(self, data):
if (not self.cache) or (not isinstance(self.x, torch.Tensor)):
N = data.graph['num_nodes']
feat_dim = data.graph['node_feat']
row, col = data.graph['edge_index']
col = col + self.in_channels
feat_nz = data.graph['node_feat'].nonzero(as_tuple=True)
feat_row, feat_col = feat_nz
full_row = torch.cat((feat_row, row))
full_col = torch.cat((feat_col, col))
value = data.graph['node_feat'][feat_nz]
full_value = torch.cat((value,
torch.ones(row.shape[0], device=value.device)))
x = SparseTensor(row=full_row, col=full_col,
sparse_sizes=(N, N+self.in_channels)
).to_torch_sparse_coo_tensor()
if self.cache:
self.x = x
else:
x = self.x
logits = self.mlp(x, input_tensor=True)
return logits
class MLP(nn.Module):
""" adapted from https://github.com/CUAI/CorrectAndSmooth/blob/master/gen_models.py """
def __init__(self, in_channels, hidden_channels, out_channels, num_layers,
dropout=.5):
super(MLP, self).__init__()
self.lins = nn.ModuleList()
self.bns = nn.ModuleList()
if num_layers == 1:
# just linear layer i.e. logistic regression
self.lins.append(nn.Linear(in_channels, out_channels))
else:
self.lins.append(nn.Linear(in_channels, hidden_channels))
self.bns.append(nn.BatchNorm1d(hidden_channels))
for _ in range(num_layers - 2):
self.lins.append(nn.Linear(hidden_channels, hidden_channels))
self.bns.append(nn.BatchNorm1d(hidden_channels))
self.lins.append(nn.Linear(hidden_channels, out_channels))
self.dropout = dropout
def reset_parameters(self):
for lin in self.lins:
lin.reset_parameters()
for bn in self.bns:
bn.reset_parameters()
def forward(self, data, input_tensor=False):
if not input_tensor:
x = data.graph['node_feat']
else:
x = data
for i, lin in enumerate(self.lins[:-1]):
x = lin(x)
x = F.relu(x, inplace=True)
x = self.bns[i](x)
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.lins[-1](x)
return x
class SGC(nn.Module):
def __init__(self, in_channels, out_channels, hops):
""" takes 'hops' power of the normalized adjacency"""
super(SGC, self).__init__()
self.conv = SGConv(in_channels, out_channels, hops, cached=True)
def reset_parameters(self):
self.conv.reset_parameters()
def forward(self, data):
edge_index = data.graph['edge_index']
x = data.graph['node_feat']
x = self.conv(x, edge_index)
return x
class SGCMem(nn.Module):
def __init__(self, in_channels, out_channels, hops):
""" lower memory version (if out_channels < in_channels)
takes weight multiplication first, then propagate
takes hops power of the normalized adjacency
"""
super(SGCMem, self).__init__()
self.lin = nn.Linear(in_channels, out_channels)
self.hops = hops
def reset_parameters(self):
self.lin.reset_parameters()
def forward(self, data):
edge_index = data.graph['edge_index']
x = data.graph['node_feat']
x = self.lin(x)
n = data.graph['num_nodes']
edge_weight=None
if isinstance(edge_index, torch.Tensor):
edge_index, edge_weight = gcn_norm(
edge_index, edge_weight, n, False,
dtype=x.dtype)
row, col = edge_index
adj_t = SparseTensor(row=col, col=row, value=edge_weight, sparse_sizes=(n, n))
elif isinstance(edge_index, SparseTensor):
edge_index = gcn_norm(
edge_index, edge_weight, n, False,
dtype=x.dtype)
edge_weight=None
adj_t = edge_index
for _ in range(self.hops):
x = matmul(adj_t, x)
return x
class GCN(nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels, num_layers=2,
dropout=0.5, save_mem=False, use_bn=True):
super(GCN, self).__init__()
cached = False
add_self_loops = True
self.convs = nn.ModuleList()
self.convs.append(
GCNConv(in_channels, hidden_channels, cached=cached, normalize=not save_mem, add_self_loops=add_self_loops))
self.bns = nn.ModuleList()
self.bns.append(nn.BatchNorm1d(hidden_channels))
for _ in range(num_layers - 2):
self.convs.append(
GCNConv(hidden_channels, hidden_channels, cached=cached, normalize=not save_mem, add_self_loops=add_self_loops))
self.bns.append(nn.BatchNorm1d(hidden_channels))
self.convs.append(
GCNConv(hidden_channels, out_channels, cached=cached, normalize=not save_mem, add_self_loops=add_self_loops))
self.dropout = dropout
self.activation = F.relu
self.use_bn = use_bn
def reset_parameters(self):
for conv in self.convs:
conv.reset_parameters()
for bn in self.bns:
bn.reset_parameters()
def forward(self, data):
x = data.graph['node_feat']
for i, conv in enumerate(self.convs[:-1]):
x = conv(x, data.graph['edge_index'])
if self.use_bn:
x = self.bns[i](x)
x = self.activation(x)
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.convs[-1](x, data.graph['edge_index'])
return x
class GAT(nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels, num_layers=2,
dropout=0.5, heads=2, sampling=False, add_self_loops=True):
super(GAT, self).__init__()
self.convs = nn.ModuleList()
self.convs.append(
GATConv(in_channels, hidden_channels, heads=heads, concat=True, add_self_loops=add_self_loops))
self.bns = nn.ModuleList()
self.bns.append(nn.BatchNorm1d(hidden_channels*heads))
for _ in range(num_layers - 2):
self.convs.append(
GATConv(hidden_channels*heads, hidden_channels, heads=heads, concat=True, add_self_loops=add_self_loops) )
self.bns.append(nn.BatchNorm1d(hidden_channels*heads))
self.convs.append(
GATConv(hidden_channels*heads, out_channels, heads=heads, concat=False, add_self_loops=add_self_loops))
self.dropout = dropout
self.activation = F.elu
self.sampling = sampling
self.num_layers = num_layers
def reset_parameters(self):
for conv in self.convs:
conv.reset_parameters()
for bn in self.bns:
bn.reset_parameters()
def forward(self, data, adjs=None, x_batch=None):
if not self.sampling:
x = data.graph['node_feat']
for i, conv in enumerate(self.convs[:-1]):
x = conv(x, data.graph['edge_index'])
x = self.bns[i](x)
x = self.activation(x)
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.convs[-1](x, data.graph['edge_index'])
else:
x = x_batch
for i, (edge_index, _, size) in enumerate(adjs):
x_target = x[:size[1]] # Target nodes are always placed first.
x = self.convs[i]((x, x_target), edge_index)
if i != self.num_layers - 1:
x = self.bns[i](x)
x = self.activation(x)
x = F.dropout(x, p=self.dropout, training=self.training)
return x
def inference(self, data, subgraph_loader):
x_all = data.graph['node_feat']
pbar = tqdm(total=x_all.size(0) * self.num_layers)
pbar.set_description('Evaluating')
total_edges = 0
device = x_all.device
for i in range(self.num_layers):
xs = []
for batch_size, n_id, adj in subgraph_loader:
edge_index, _, size = adj.to(device)
total_edges += edge_index.size(1)
x = x_all[n_id].to(device)
x_target = x[:size[1]]
x = self.convs[i]((x, x_target), edge_index)
if i != self.num_layers - 1:
x = self.bns[i](x)
x = self.activation(x)
xs.append(x.cpu())
pbar.update(batch_size)
x_all = torch.cat(xs, dim=0)
pbar.close()
return x_all
class MultiLP(nn.Module):
""" label propagation, with possibly multiple hops of the adjacency """
def __init__(self, out_channels, alpha, hops, num_iters=50, mult_bin=False):
super(MultiLP, self).__init__()
self.out_channels = out_channels
self.alpha = alpha
self.hops = hops
self.num_iters = num_iters
self.mult_bin = mult_bin # handle multiple binary tasks
def forward(self, data, train_idx):
n = data.graph['num_nodes']
edge_index = data.graph['edge_index']
edge_weight=None
if isinstance(edge_index, torch.Tensor):
edge_index, edge_weight = gcn_norm(
edge_index, edge_weight, n, False)
row, col = edge_index
# transposed if directed
adj_t = SparseTensor(row=col, col=row, value=edge_weight, sparse_sizes=(n, n))
elif isinstance(edge_index, SparseTensor):
edge_index = gcn_norm(
edge_index, edge_weight, n, False)
edge_weight=None
adj_t = edge_index
y = torch.zeros((n, self.out_channels)).to(adj_t.device())
if data.label.shape[1] == 1:
# make one hot
y[train_idx] = F.one_hot(data.label[train_idx], self.out_channels).squeeze(1).to(y)
elif self.mult_bin:
y = torch.zeros((n, 2*self.out_channels)).to(adj_t.device())
for task in range(data.label.shape[1]):
y[train_idx, 2*task:2*task+2] = F.one_hot(data.label[train_idx, task], 2).to(y)
else:
y[train_idx] = data.label[train_idx].to(y.dtype)
result = y.clone()
for _ in range(self.num_iters):
for _ in range(self.hops):
result = matmul(adj_t, result)
result *= self.alpha
result += (1-self.alpha)*y
if self.mult_bin:
output = torch.zeros((n, self.out_channels)).to(result.device)
for task in range(data.label.shape[1]):
output[:, task] = result[:, 2*task+1]
result = output
return result
class MixHopLayer(nn.Module):
""" Our MixHop layer """
def __init__(self, in_channels, out_channels, hops=2):
super(MixHopLayer, self).__init__()
self.hops = hops
self.lins = nn.ModuleList()
for hop in range(self.hops+1):
lin = nn.Linear(in_channels, out_channels)
self.lins.append(lin)
def reset_parameters(self):
for lin in self.lins:
lin.reset_parameters()
def forward(self, x, adj_t):
xs = [self.lins[0](x) ]
for j in range(1,self.hops+1):
# less runtime efficient but usually more memory efficient to mult weight matrix first
x_j = self.lins[j](x)
for hop in range(j):
x_j = matmul(adj_t, x_j)
xs += [x_j]
return torch.cat(xs, dim=1)
class MixHop(nn.Module):
""" our implementation of MixHop
some assumptions: the powers of the adjacency are [0, 1, ..., hops],
with every power in between
each concatenated layer has the same dimension --- hidden_channels
"""
def __init__(self, in_channels, hidden_channels, out_channels, num_layers=2,
dropout=0.5, hops=2):
super(MixHop, self).__init__()
self.convs = nn.ModuleList()
self.convs.append(MixHopLayer(in_channels, hidden_channels, hops=hops))
self.bns = nn.ModuleList()
self.bns.append(nn.BatchNorm1d(hidden_channels*(hops+1)))
for _ in range(num_layers - 2):
self.convs.append(
MixHopLayer(hidden_channels*(hops+1), hidden_channels, hops=hops))
self.bns.append(nn.BatchNorm1d(hidden_channels*(hops+1)))
self.convs.append(
MixHopLayer(hidden_channels*(hops+1), out_channels, hops=hops))
# note: uses linear projection instead of paper's attention output
self.final_project = nn.Linear(out_channels*(hops+1), out_channels)
self.dropout = dropout
self.activation = F.relu
def reset_parameters(self):
for conv in self.convs:
conv.reset_parameters()
for bn in self.bns:
bn.reset_parameters()
self.final_project.reset_parameters()
def forward(self, data):
x = data.graph['node_feat']
n = data.graph['num_nodes']
edge_index = data.graph['edge_index']
edge_weight = None
if isinstance(edge_index, torch.Tensor):
edge_index, edge_weight = gcn_norm(
edge_index, edge_weight, n, False,
dtype=x.dtype)
row, col = edge_index
adj_t = SparseTensor(row=col, col=row, value=edge_weight, sparse_sizes=(n, n))
elif isinstance(edge_index, SparseTensor):
edge_index = gcn_norm(
edge_index, edge_weight, n, False,
dtype=x.dtype)
edge_weight=None
adj_t = edge_index
for i, conv in enumerate(self.convs[:-1]):
x = conv(x, adj_t)
x = self.bns[i](x)
x = self.activation(x)
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.convs[-1](x, adj_t)
x = self.final_project(x)
return x
class GCNJK(nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels, num_layers=2,
dropout=0.5, save_mem=False, jk_type='max'):
super(GCNJK, self).__init__()
cached = False
self.convs = nn.ModuleList()
self.convs.append(
GCNConv(in_channels, hidden_channels, cached=cached, normalize=not save_mem))
self.bns = nn.ModuleList()
self.bns.append(nn.BatchNorm1d(hidden_channels))
for _ in range(num_layers - 2):
self.convs.append(
GCNConv(hidden_channels, hidden_channels, cached=cached, normalize=not save_mem))
self.bns.append(nn.BatchNorm1d(hidden_channels))
self.convs.append(
GCNConv(hidden_channels, hidden_channels, cached=cached, normalize=not save_mem))
self.dropout = dropout
self.activation = F.relu
self.jump = JumpingKnowledge(jk_type, channels=hidden_channels, num_layers=1)
if jk_type == 'cat':
self.final_project = nn.Linear(hidden_channels * num_layers, out_channels)
else: # max or lstm
self.final_project = nn.Linear(hidden_channels, out_channels)
def reset_parameters(self):
for conv in self.convs:
conv.reset_parameters()
for bn in self.bns:
bn.reset_parameters()
self.jump.reset_parameters()
self.final_project.reset_parameters()
def forward(self, data):
x = data.graph['node_feat']
xs = []
for i, conv in enumerate(self.convs[:-1]):
x = conv(x, data.graph['edge_index'])
x = self.bns[i](x)
x = self.activation(x)
xs.append(x)
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.convs[-1](x, data.graph['edge_index'])
xs.append(x)
x = self.jump(xs)
x = self.final_project(x)
return x
class GATJK(nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels, num_layers=2,
dropout=0.5, heads=2, jk_type='max'):
super(GATJK, self).__init__()
self.convs = nn.ModuleList()
self.convs.append(
GATConv(in_channels, hidden_channels, heads=heads, concat=True))
self.bns = nn.ModuleList()
self.bns.append(nn.BatchNorm1d(hidden_channels*heads))
for _ in range(num_layers - 2):
self.convs.append(
GATConv(hidden_channels*heads, hidden_channels, heads=heads, concat=True) )
self.bns.append(nn.BatchNorm1d(hidden_channels*heads))
self.convs.append(
GATConv(hidden_channels*heads, hidden_channels, heads=heads))
self.dropout = dropout
self.activation = F.elu # note: uses elu
self.jump = JumpingKnowledge(jk_type, channels=hidden_channels*heads, num_layers=1)
if jk_type == 'cat':
self.final_project = nn.Linear(hidden_channels*heads*num_layers, out_channels)
else: # max or lstm
self.final_project = nn.Linear(hidden_channels*heads, out_channels)
def reset_parameters(self):
for conv in self.convs:
conv.reset_parameters()
for bn in self.bns:
bn.reset_parameters()
self.jump.reset_parameters()
self.final_project.reset_parameters()
def forward(self, data):
x = data.graph['node_feat']
xs = []
for i, conv in enumerate(self.convs[:-1]):
x = conv(x, data.graph['edge_index'])
x = self.bns[i](x)
x = self.activation(x)
xs.append(x)
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.convs[-1](x, data.graph['edge_index'])
xs.append(x)
x = self.jump(xs)
x = self.final_project(x)
return x
class H2GCNConv(nn.Module):
""" Neighborhood aggregation step """
def __init__(self):
super(H2GCNConv, self).__init__()
def reset_parameters(self):
pass
def forward(self, x, adj_t, adj_t2):
x1 = matmul(adj_t, x)
x2 = matmul(adj_t2, x)
return torch.cat([x1, x2], dim=1)
class H2GCN(nn.Module):
""" our implementation """
def __init__(self, in_channels, hidden_channels, out_channels, edge_index, num_nodes,
num_layers=2, dropout=0.5, save_mem=False, num_mlp_layers=1,
use_bn=True, conv_dropout=True):
super(H2GCN, self).__init__()
self.feature_embed = MLP(in_channels, hidden_channels,
hidden_channels, num_layers=num_mlp_layers, dropout=dropout)
self.convs = nn.ModuleList()
self.convs.append(H2GCNConv())
self.bns = nn.ModuleList()
self.bns.append(nn.BatchNorm1d(hidden_channels*2*len(self.convs) ) )
for l in range(num_layers - 1):
self.convs.append(H2GCNConv())
if l != num_layers-2:
self.bns.append(nn.BatchNorm1d(hidden_channels*2*len(self.convs) ) )
self.dropout = dropout
self.activation = F.relu
self.use_bn = use_bn
self.conv_dropout = conv_dropout # dropout neighborhood aggregation steps
self.jump = JumpingKnowledge('cat')
last_dim = hidden_channels*(2**(num_layers+1)-1)
self.final_project = nn.Linear(last_dim, out_channels)
self.num_nodes = num_nodes
self.init_adj(edge_index)
def reset_parameters(self):
self.feature_embed.reset_parameters()
self.final_project.reset_parameters()
for bn in self.bns:
bn.reset_parameters()
def init_adj(self, edge_index):
""" cache normalized adjacency and normalized strict two-hop adjacency,
neither has self loops
"""
n = self.num_nodes
if isinstance(edge_index, SparseTensor):
dev = edge_index.device
adj_t = edge_index
adj_t = scipy.sparse.csr_matrix(adj_t.to_scipy())
adj_t[adj_t > 0] = 1
adj_t[adj_t < 0] = 0
adj_t = SparseTensor.from_scipy(adj_t).to(dev)
elif isinstance(edge_index, torch.Tensor):
row, col = edge_index
adj_t = SparseTensor(row=col, col=row, value=None, sparse_sizes=(n, n))
adj_t.remove_diag(0)
adj_t2 = matmul(adj_t, adj_t)
adj_t2.remove_diag(0)
adj_t = scipy.sparse.csr_matrix(adj_t.to_scipy())
adj_t2 = scipy.sparse.csr_matrix(adj_t2.to_scipy())
adj_t2 = adj_t2 - adj_t
adj_t2[adj_t2 > 0] = 1
adj_t2[adj_t2 < 0] = 0
adj_t = SparseTensor.from_scipy(adj_t)
adj_t2 = SparseTensor.from_scipy(adj_t2)
adj_t = gcn_norm(adj_t, None, n, add_self_loops=False)
adj_t2 = gcn_norm(adj_t2, None, n, add_self_loops=False)
self.adj_t = adj_t.to(edge_index.device)
self.adj_t2 = adj_t2.to(edge_index.device)
def forward(self, data):
x = data.graph['node_feat']
n = data.graph['num_nodes']
adj_t = self.adj_t
adj_t2 = self.adj_t2
x = self.feature_embed(data)
x = self.activation(x)
xs = [x]
if self.conv_dropout:
x = F.dropout(x, p=self.dropout, training=self.training)
for i, conv in enumerate(self.convs[:-1]):
x = conv(x, adj_t, adj_t2)
if self.use_bn:
x = self.bns[i](x)
xs.append(x)
if self.conv_dropout:
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.convs[-1](x, adj_t, adj_t2)
if self.conv_dropout:
x = F.dropout(x, p=self.dropout, training=self.training)
xs.append(x)
x = self.jump(xs)
if not self.conv_dropout:
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.final_project(x)
return x
class APPNP_Net(nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels, dprate=.0, dropout=.5, K=10, alpha=.1, num_layers=3):
super(APPNP_Net, self).__init__()
self.mlp = MLP(in_channels, hidden_channels, out_channels, num_layers=num_layers, dropout=dropout)
self.prop1 = APPNP(K, alpha)
self.dprate = dprate
self.dropout = dropout
def reset_parameters(self):
self.mlp.reset_parameters()
self.prop1.reset_parameters()
def forward(self, data):
edge_index = data.graph['edge_index']
x = self.mlp(data)
if self.dprate == 0.0:
x = self.prop1(x, edge_index)
return x
else:
x = F.dropout(x, p=self.dprate, training=self.training)
x = self.prop1(x, edge_index)
return x
class GPR_prop(MessagePassing):
'''
GPRGNN, from original repo https://github.com/jianhao2016/GPRGNN
propagation class for GPR_GNN
'''
def __init__(self, K, alpha, Init, Gamma=None, bias=True, **kwargs):
super(GPR_prop, self).__init__(aggr='add', **kwargs)
self.K = K
self.Init = Init
self.alpha = alpha
assert Init in ['SGC', 'PPR', 'NPPR', 'Random', 'WS']
if Init == 'SGC':
# SGC-like
TEMP = 0.0*np.ones(K+1)
TEMP[alpha] = 1.0
elif Init == 'PPR':
# PPR-like
TEMP = alpha*(1-alpha)**np.arange(K+1)
TEMP[-1] = (1-alpha)**K
elif Init == 'NPPR':
# Negative PPR
TEMP = (alpha)**np.arange(K+1)
TEMP = TEMP/np.sum(np.abs(TEMP))
elif Init == 'Random':
# Random
bound = np.sqrt(3/(K+1))
TEMP = np.random.uniform(-bound, bound, K+1)
TEMP = TEMP/np.sum(np.abs(TEMP))
elif Init == 'WS':
# Specify Gamma
TEMP = Gamma
self.temp = nn.Parameter(torch.tensor(TEMP))
def reset_parameters(self):
nn.init.zeros_(self.temp)
for k in range(self.K+1):
self.temp.data[k] = self.alpha*(1-self.alpha)**k
self.temp.data[-1] = (1-self.alpha)**self.K
def forward(self, x, edge_index, edge_weight=None):
if isinstance(edge_index, torch.Tensor):
edge_index, norm = gcn_norm(
edge_index, edge_weight, num_nodes=x.size(0), dtype=x.dtype)
elif isinstance(edge_index, SparseTensor):
edge_index = gcn_norm(
edge_index, edge_weight, num_nodes=x.size(0), dtype=x.dtype)
norm = None
hidden = x*(self.temp[0])
for k in range(self.K):
x = self.propagate(edge_index, x=x, norm=norm)
gamma = self.temp[k+1]
hidden = hidden + gamma*x
return hidden
def message(self, x_j, norm):
return norm.view(-1, 1) * x_j
def __repr__(self):
return '{}(K={}, temp={})'.format(self.__class__.__name__, self.K,
self.temp)
class GPRGNN(nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels, Init='Random', dprate=.0, dropout=.5, K=10, alpha=.1, Gamma=None, num_layers=3):
super(GPRGNN, self).__init__()
self.mlp = MLP(in_channels, hidden_channels, out_channels, num_layers=num_layers, dropout=dropout)
self.prop1 = GPR_prop(K, alpha, Init, Gamma)
self.Init = Init
self.dprate = dprate
self.dropout = dropout
def reset_parameters(self):
self.mlp.reset_parameters()
self.prop1.reset_parameters()
def forward(self, data):
edge_index = data.graph['edge_index']
x = self.mlp(data)
if self.dprate == 0.0:
x = self.prop1(x, edge_index)
return x
else:
x = F.dropout(x, p=self.dprate, training=self.training)
x = self.prop1(x, edge_index)
return x
class GCNII(nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels, num_layers, alpha, theta, shared_weights=True, dropout=0.5):
super(GCNII, self).__init__()
self.lins = nn.ModuleList()
self.lins.append(nn.Linear(in_channels, hidden_channels))
self.lins.append(nn.Linear(hidden_channels, out_channels))
self.bns = nn.ModuleList()
self.convs = nn.ModuleList()
for layer in range(num_layers):
self.convs.append(
GCN2Conv(hidden_channels, alpha, theta, layer + 1,
shared_weights, normalize=False))
self.bns.append(nn.BatchNorm1d(hidden_channels))
self.dropout = dropout
def reset_parameters(self):
for lin in self.lins:
lin.reset_parameters()
for conv in self.convs:
conv.reset_parameters()
for bn in self.bns:
bn.reset_parameters()
def forward(self, data):
x = data.graph['node_feat']
n = data.graph['num_nodes']
edge_index = data.graph['edge_index']
edge_weight = None
if isinstance(edge_index, torch.Tensor):
edge_index, edge_weight = gcn_norm(
edge_index, edge_weight, n, False, dtype=x.dtype)
row, col = edge_index
adj_t = SparseTensor(row=col, col=row, value=edge_weight, sparse_sizes=(n, n))
elif isinstance(edge_index, SparseTensor):
edge_index = gcn_norm(
edge_index, edge_weight, n, False, dtype=x.dtype)
edge_weight=None
adj_t = edge_index
x = F.dropout(x, self.dropout, training=self.training)
x = x_0 = self.lins[0](x).relu()
for i, conv in enumerate(self.convs):
x = F.dropout(x, self.dropout, training=self.training)
x = conv(x, x_0, adj_t)
x = self.bns[i](x)
x = x.relu()
x = F.dropout(x, self.dropout, training=self.training)
x = self.lins[1](x)
return x