forked from smthomas-sci/SkinCancerSegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
02_create_patches_from_dataset.py
184 lines (138 loc) · 5.46 KB
/
02_create_patches_from_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import cv2
import os
import argparse
import numpy as np
# Argparse setup
parser = argparse.ArgumentParser(description="Create training set of patches from n images")
parser.add_argument("--dir", type=str, default="./data/", help="Path to data directory")
parser.add_argument("--dim", type=int, default=512, help="Patch size. default 512")
parser.add_argument("--overlap", dest="overlap", action="store_true", help="Boolean to signal overlaping tiling")
parser.set_defaults(overlap=False)
args = parser.parse_args()
# Assign to global names
base_dir = args.dir
dim = args.dim
overlap = args.overlap
# Create output folder
if overlap:
patch_dir = os.path.join(base_dir, "Patches_Overlaped_" + str(dim))
else:
patch_dir = os.path.join(base_dir, "Patches_" + str(dim))
cmd = "mkdir -p " + patch_dir
os.system(cmd)
# Setup I/O directories
image_in = os.path.join(base_dir, "Images")
mask_in = os.path.join(base_dir, "Masks")
# Get files in dataset
files = os.listdir(image_in)
step = 1
if overlap:
# Perform overlap tiling
for file in files:
print("Processing file", step, "of", len(files))
step += 1
fname = file.split(".")[0]
# Create folder name and subdirectories
folder = os.path.join(patch_dir, fname)
cmd = "mkdir -p " + folder
os.system(cmd)
for sub_folder in ["X", "y"]:
cmd = "mkdir -p " + os.path.join(folder, sub_folder)
os.system(cmd)
# Load image and mask
image = cv2.imread(os.path.join(image_in, fname + ".tif"))
mask = cv2.imread(os.path.join(mask_in, fname + ".png"))
h, w = image.shape[0], image.shape[1]
# Compute number of vertical and horizontal steps
w_steps = w // dim
w_overlap = (dim - (w % dim)) // w_steps
h_steps = h // dim
h_overlap = (dim - (h % dim)) // h_steps
# starting positions
w_x, w_y = 0, dim
h_x, h_y = 0, dim
count = 1
# Loop through all tiles
for i in range(h_steps+1):
for j in range(w_steps+1):
# Grab tiles
image_patch = image[h_x:h_y, w_x:w_y, :]
mask_patch = mask[h_x:h_y, w_x:w_y, :]
# Check dim will fit in image
if image_patch.shape[0] < dim or image_patch.shape[1] < dim:
# Increment
w_x += dim
w_y += dim
continue
# Filter out background patches
if np.sum(mask_patch) == 0:
# Increment
w_x += dim
w_y += dim
continue
# Save patches
image_name = "X/" + fname + "_" + "{:04d}.png".format(count)
image_path = os.path.join(folder, image_name)
mask_name = "y/" + fname + "_" + "{:04d}.png".format(count)
mask_path = os.path.join(folder, mask_name)
print("Saving...", image_path, mask_path)
cv2.imwrite(image_path, image_patch)
cv2.imwrite(mask_path, mask_patch)
count += 1
# Update column positions
w_x += dim - w_overlap
w_y += dim - w_overlap
# Update row positions
h_x += dim - h_overlap
h_y += dim - h_overlap
w_x, w_y = 0, dim
else:
# Sliding window tiling
for file in files:
print("Processing file", step, "of", len(files))
step += 1
# Get file name
fname = file.split(".")[0]
# Create folder name and subdirectories
folder = os.path.join(patch_dir, fname)
cmd = "mkdir -p " + folder
os.system(cmd)
for sub_folder in ["X", "y"]:
cmd = "mkdir -p " + os.path.join(folder, sub_folder)
os.system(cmd)
# Load image and mask
image = cv2.imread(os.path.join(image_in, fname + ".tif"))
mask = cv2.imread(os.path.join(mask_in, fname + ".png"))
# Calculate number of steps to tile image
row_steps = (image.shape[0] // dim) + 1
col_steps = (image.shape[1] // dim) + 1
count = 1
row_pos = 0
col_pos = 0
for r in range(row_steps):
for c in range(col_steps):
image_patch = image[row_pos:row_pos+dim, col_pos:col_pos+dim, :]
mask_patch = mask[row_pos:row_pos+dim, col_pos:col_pos+dim, :]
# Check dim will fit in image
if image_patch.shape[0] < dim or image_patch.shape[1] < dim:
# Increment
col_pos += dim
continue
# Filter out background patches
if np.sum(mask_patch) == 0:
# Increment
col_pos += dim
continue
# Save patches
image_name = "X/" + fname + "_" + "{:04d}.png".format(count)
image_path = os.path.join(folder, image_name)
mask_name = "y/" + fname + "_" + "{:04d}.png".format(count)
mask_path = os.path.join(folder, mask_name)
print("Saving...", image_path, mask_path)
cv2.imwrite(image_path, image_patch)
cv2.imwrite(mask_path, mask_patch)
count += 1
col_pos += dim
row_pos += dim
col_pos = 0
print("done.")