forked from smthomas-sci/SkinCancerSegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
04_augment_data.py
69 lines (49 loc) · 1.76 KB
/
04_augment_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
"""
Augment Training Data via simple Duplication
"""
import os
import skimage.io as io
import numpy as np
import matplotlib.pyplot as plt
color_dict = {
"EPI": [73, 0, 106],
"GLD": [108, 0, 115],
"INF": [145, 1, 122],
"RET": [181, 9, 130],
"FOL": [216, 47, 148],
"PAP": [236, 85, 157],
"HYP": [254, 246, 242],
"KER": [248, 123, 168],
"BKG": [0, 0, 0],
"BCC": [127, 255, 255],
"SCC": [127, 255, 142],
"IEC": [255, 127, 127]
}
X_dir = "/home/simon/Documents/PhD/Data/Histo_Segmentation/Datasets_n290/2x/TrainingData/2x_n_290/X_train"
y_dir = "/home/simon/Documents/PhD/Data/Histo_Segmentation/Datasets_n290/2x/TrainingData/2x_n_290/y_train"
files = os.listdir(X_dir)
for i, file in enumerate(files):
# Import mask
mask = io.imread(os.path.join(y_dir, file))
for key in ["BCC", "SCC", "IEC"]:
present = np.any(np.all(mask == tuple(color_dict[key]), axis=-1))
if present:
# Load image
image = io.imread(os.path.join(X_dir, file))
# Augment
fs = ["LR", "UD"]
for f, func in enumerate([np.fliplr, np.flipud]):
mask_aug = func(mask)
image_aug = func(image)
# Rotate
deg = ["0", "90", "180", "270"]
for k in range(4):
mask_out = np.rot90(mask_aug, k)
image_out = np.rot90(image_aug, k)
# Save
fname = file.split(".")[0] + "_" + fs[f] + "_" + deg[k] + ".png"
io.imsave(os.path.join(y_dir, fname), mask_out)
io.imsave(os.path.join(X_dir, fname), image_out)
# Move to next
break
print("Step", i, "of", len(files))