forked from smthomas-sci/SkinCancerSegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
07_whole_image_predict.py
71 lines (48 loc) · 2.19 KB
/
07_whole_image_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
"""
Implementation of whole image prediction with variable overlap.
"""
from seg_utils import *
from seg_models import *
from numpy.random import seed
from tensorflow import set_random_seed
# Set seed
seed(1)
set_random_seed(2)
num_classes = 12
gpus = 1
# Import model
model = ResNet_UNet_Dropout(num_classes=num_classes, dropout=0.5, final_activation=False)
model = generate_temperature_model(model, dim=256, T=1, trainable=False)
#model.load_weights("/home/simon/Desktop/10x_Experiments_Over_Aug/weights/10x_290_Over_Aug_BS_24_PS_256_C_12_FT_True_E_5_LR_1e-06_WM_F_model_ResNet_UNet_Dropout_less_params_all_32_seed_1_DO_0.5_checkpoint_001.h5")
#model.load_weights("/home/simon/Desktop/10x_Experiments_Over_Aug/weights/10x_temperature_scaled.h5")
model.load_weights("/media/simon/UNTITLED/Segmentation_Experiments/Segmentation/10x_Experiments_Over_Aug/weights/10x_temperature_scaled.h5")
model.summary()
# Create Keras function instead of model - helps with Learning Phase errors
model_in = model.layers[0].get_input_at(0)
model_out = model.layers[-3].output # Get output with softmax include in temp_scaling layer (ad-hoc fix)
model = K.function(inputs=[model_in], outputs=[model_out])
K.set_learning_phase(0)
# Create color palette
color_dict = {
"EPI": [73, 0, 106],
"GLD": [108, 0, 115],
"INF": [145, 1, 122],
"RET": [181, 9, 130],
"FOL": [216, 47, 148],
"PAP": [236, 85, 157],
"HYP": [254, 246, 242],
"KER": [248, 123, 168],
"BKG": [0, 0, 0],
"BCC": [127, 255, 255],
"SCC": [127, 255, 142],
"IEC": [255, 127, 127]
}
# Set up colors to match classes
colors = [color_dict[key] for key in color_dict.keys()]
base_dir = "/home/simon/Desktop/10x_Slides/"
fnames = os.listdir(base_dir)
# with open("/home/simon/Desktop/10x_Experiments_Over_Aug/validation_files.txt", "r") as fh:
# fnames = [line.strip() + ".tif" for line in fh.readlines()]
files = [ os.path.join(base_dir, file) for file in fnames if ( "BCC" in file or "IEC" in file or "SCC" in file or "KA" in file)]
output_directory = "/home/simon/Desktop/SegmentationRevision/EXTERNAL_PROB_MAPS/"
whole_image_predict(files, model, output_directory, colors, compare=False, pad_val=100, prob_map=True)