-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWH-entanglement-rank-norm.jl
113 lines (104 loc) · 4.02 KB
/
WH-entanglement-rank-norm.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
using Convex
using LinearAlgebra
using SCS
using DelimitedFiles
using Test
solver = () -> SCS.Optimizer(verbose=0)
println("Here we scan over α∈[-1,1] to generate our data.")
println("It will take a minute to initialize the solver.")
#First we define the linear program for ||ρ_α^{⊗2}||_{Ent_1}
function _DblCopyWHEnt1Norm(λ,d)
if !(0<=λ && λ<=1)
throw(DomainError(λ,"λ must be in [0,1]."))
end
v = Variable(4)
objective = λ^2 * v[1] + λ*(1-λ)*(v[2]+v[3])+(1-λ)^2 *v[4]
problem = maximize(objective)
problem.constraints += [
#Trace norm condition
(d+1)^2 * v[1] + (d+1)*(d-1)*(v[2]+v[3]) + (d-1)^2 * v[4] == 4/(d^2),
#PPT conditions
sum(v) >= 0,
(v[1]+v[3])*(d+1) >= (v[2]+v[4])*(d-1),
(v[1]+v[2])*(d+1) >= (v[3]+v[4])*(d-1),
v[1]*(d+1)^2 + v[4]*(1-d)^2 >= (v[2]+v[3])*(d-1)*(d+1),
#Positivity conditions
v[1] >= 0 , v[2] >= 0 , v[3] >= 0 , v[4] >= 0
]
solve!(problem, solver)
return problem.optval
end
function _DblCopyWHEnt1Normv2(λ,d)
if !(0<=λ && λ<=1)
throw(DomainError(λ,"λ must be in [0,1]."))
end
v = Variable(4)
objective = v[1] + (2*λ-1)*(v[2]+v[3]-v[4] + 2*v[4]*λ)
problem = maximize(objective)
problem.constraints += [
#Trace norm condition
d^2*(d*(d*v[1]+v[2]+v[3])+v[4]) == 1
#Positivity conditions
v[1]+v[2]+v[3]+v[4] >= 0
v[1]-v[2]+v[3]-v[4] >= 0
v[1]+v[2]-v[3]-v[4] >= 0
v[1]-v[2]-v[3]+v[4] >= 0
#PPT conditions
v[1] >= 0
v[1] + d*v[2] >= 0
v[1] + d*v[3] >= 0
v[1] + d*(v[2]+v[3]) + d^2 * v[4] >= 0
]
solve!(problem, solver)
return problem.optval
end
#Next we define the function that returns the single copy cone value
function _SingleCopyEntkNormWH(α,d,k)
if !(-1<=α && α<=1)
throw(DomainError(α,"α must be in [-1,1]."))
elseif !(k >= 0 && isinteger(k))
throw(DomainError(k,"k must be a positive integer"))
end
k == 1 ? r = (1+min(α,0))/(d*(d-α)) : r = (1+abs(α))/(d*(d-α))
return r
end
@testset "Generate Data" begin
#For scanning over the data
d = 3
α_range = -1:0.01:1
ctr = 0
print_ctr = 0
norm_results = zeros(length(α_range),7)
ent_results = zeros(length(α_range),7)
for α in α_range
ctr += 1
print_ctr += 1
if print_ctr == 10
println("Now checking α = ", α)
print_ctr = 0
end
λ = ((1+d)*(1-α))/(2*(d-α))
#Norm results
dbl_val = _DblCopyWHEnt1Norm(λ,d)
single_copy_k1 = _SingleCopyEntkNormWH(α,d,1)
single_copy_k2 = _SingleCopyEntkNormWH(α,d,2)
k1sq = single_copy_k1^2
k2sq = single_copy_k2^2
norm_results[ctr,:] = [α,λ,dbl_val,k1sq,k2sq,dbl_val-k1sq,dbl_val-k2sq]
#Entropic results
dbl_ent = -log2(dbl_val) + 2*log2(d)
ent1_sing = -log2(single_copy_k1) + log2(d)
ent2_sing = -log2(single_copy_k2) + log2(d)
ent_results[ctr,:] = [α,λ,dbl_ent,2*ent1_sing,2*ent2_sing,dbl_ent-2*ent1_sing,dbl_ent-2*ent2_sing]
end
header1 = ["α" "λ" "Two Copy Ent_1 Norm" "One Copy Ent_1 Norm Squared" "One Copy Ent_2 Norm Squared" "Ent_1 norm dif" "Ent_1 v Ent_2 dif"]
data_to_save1 = vcat(header1,norm_results)
writedlm("norm_results.csv", data_to_save1, ',')
header2 = ["alpha" "lambda" "Two Werner States Ent 1" "Single Werner State Ent 1 Dbld" "Single Werner State Ent 2 Dbld" "Ent 1 Dif" "Ent_1 v Ent_2 dif"]
data_to_save2 = vcat(header2,ent_results)
writedlm("entropy_results.csv", data_to_save2, ',')
#We know that ||𝔽 ⊗ 𝔽||_{Ent1} = 2/(d(d-1)) (Zhu and Hayashi, 2010)
#It follows that ||ρ_{λ=0} \otimes ρ_{λ=0} ||_{Ent1} = 2/(d^3(d-1))
#So assuming that the last entry is α=1 (λ=0), this test will pass
@test isapprox(norm_results[length(α_range),3], 2/(d^3*(d-1)) , atol=1e-6)
end