forked from aboulch/normals_Hough
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathNormals.h
606 lines (520 loc) · 17.3 KB
/
Normals.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
/* License Information
*
* Copyright (C) ONERA, The French Aerospace Lab
* Author: Alexandre BOULCH
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this
* software and associated documentation files (the "Software"), to deal in the Software
* without restriction, including without limitation the rights to use, copy, modify, merge,
* publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
* to whom the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
* PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
* OR OTHER DEALINGS IN THE SOFTWARE.
*
*
* Note that this library relies on external libraries subject to their own license.
* To use this software, you are subject to the dependencies license, these licenses
* applies to the dependency ONLY and NOT this code.
* Please refer below to the web sites for license informations:
* PCL, BOOST,NANOFLANN, EIGEN
*
* When using the software please aknowledge the corresponding publication:
* "Deep Learning for Robust Normal Estimation in Unstructured Point Clouds "
* by Alexandre Boulch and Renaud Marlet
* Symposium of Geometry Processing 2016, Computer Graphics Forum
*/
#ifndef NORMALS_HEADER
#define NORMALS_HEADER
#include <vector>
#include <iostream>
#include <ctime>
#include <math.h>
#include <string>
#include <sstream>
#include <Eigen/Dense>
#include <nanoflann.hpp>
#ifdef _OPENMP
#include <omp.h>
#define USE_OPENMP_FOR_NORMEST
#endif
class Eigen_Normal_Estimator{
private:
const Eigen::MatrixX3d& pts;/*!< Point cloud*/
Eigen::MatrixX3d& nls;/*!< Normal cloud*/
std::vector<double> densities; /*!< vector of the densities*/
//// PARAMETERS ////
int n_planes; /*!< Plane number to draw*/
int n_phi;/*!< Accumulator discretization parameter*/
int n_rot;/*!< Rotation number*/
size_t neighborhood_size; /*size of the neighborhood*/
bool use_density; /*!< use a density estimation of triplets generation*/
double tol_angle_rad;/*!< Angle parameter for cluster normal selection*/
size_t k_density; /*!< size of the neighborhood for density estimation*/
std::function<void(int)> progressCallback;
public:
//accessor
const Eigen::MatrixX3d& get_points()const {return pts;}
Eigen::MatrixX3d& get_normals(){return nls;}
int& get_T() { return n_planes; }
int& get_n_phi() { return n_phi; }
int& get_n_rot() { return n_rot; }
size_t& get_K() { return neighborhood_size; }
bool& density_sensitive() { return use_density; }
double& get_tol_angle_rad() { return tol_angle_rad; }
size_t& get_K_density() { return k_density; }
const Eigen::MatrixX3d& get_normals()const {return nls;}
const int& get_T() const {return n_planes;}
const int& get_n_phi() const {return n_phi;}
const int& get_n_rot() const {return n_rot;}
const size_t& get_K() const { return neighborhood_size; }
const bool& density_sensitive() const {return use_density;}
const double& get_tol_angle_rad() const {return tol_angle_rad;}
const size_t& get_K_density() const { return k_density; }
//// TYPE DEFINITIONS ////
typedef nanoflann::KDTreeEigenMatrixAdaptor< Eigen::MatrixX3d > kd_tree; //a row is a point
// constructor
Eigen_Normal_Estimator(const Eigen::MatrixX3d& points, Eigen::MatrixX3d& normals)
: pts(points)
, nls(normals)
{
n_planes = 700;
n_rot = 5;
n_phi = 15;
tol_angle_rad = 0.79;
neighborhood_size = 200;
use_density = false;
k_density = 5;
}
void setProgressCallback(std::function<void(int)> callback)
{
progressCallback = callback;
}
int maxProgressCounter() const
{
return pts.rows() * 2;
}
void estimate_normals()
{
/*********************************
* INIT
********************************/
//initialize the random number generator
srand(static_cast<unsigned int>(time(NULL)));
//creating vector of random int
std::vector<size_t> vecInt(1000000);
for (size_t i = 0; i < vecInt.size(); i++)
{
vecInt[i] = static_cast<size_t>(rand());
}
//confidence intervals (2 intervals length)
std::vector<float> conf_interv(n_planes);
for (int i = 0; i < n_planes; i++)
{
conf_interv[i] = 2.f / std::sqrt(i + 1.f);
}
//random permutation of the points (avoid thread difficult block)
std::vector<int> permutation(pts.rows());
for (int i = 0; i < pts.rows(); i++)
{
permutation[i] = i;
}
for (int i = 0; i < pts.rows(); i++)
{
int j = rand() % pts.rows();
std::swap(permutation[i], permutation[j]);
}
//creation of the rotation matrices and their inverses
std::vector<Eigen::Matrix3d> rotMat;
std::vector<Eigen::Matrix3d> rotMatInv;
generate_rotation_matrix(rotMat,rotMatInv, n_rot*200);
//dimensions of the accumulator
int d1 = 2*n_phi;
int d2 = n_phi+1;
//progress
int progress = 0;
/*******************************
* ESTIMATION
******************************/
//resizing the normal point cloud
nls.resize(pts.rows(), 3);
//kd tree creation
//build de kd_tree
kd_tree tree(3, pts, 10 /* max leaf */ );
tree.index->buildIndex();
//create the density estimation for each point
densities.resize(pts.rows());
#if defined(USE_OPENMP_FOR_NORMEST)
#pragma omp parallel for schedule(guided)
#endif
for (int per = 0; per < pts.rows(); per++)
{
//index of the point
int n = permutation[per];
//getting the list of neighbors
const Eigen::Vector3d& pt_query = pts.row(n);
std::vector<Eigen::MatrixX3d::Index> pointIdxSearch(k_density + 1);
std::vector<double> pointSquaredDistance(k_density + 1);
//knn for k_density+1 because the point is itself include in the search tree
tree.index->knnSearch(&pt_query[0], k_density + 1, &pointIdxSearch[0], &pointSquaredDistance[0]);
double d = 0;
for (size_t i = 0; i < pointSquaredDistance.size(); i++)
{
d += std::sqrt(pointSquaredDistance[i]);
}
d /= pointSquaredDistance.size() - 1;
densities[n] = d;
if (progressCallback)
{
progressCallback(++progress);
}
}
int rotations = std::max(n_rot,1);
//create the list of triplets in KNN case
Eigen::MatrixX3i trip;
if (!use_density)
{
list_of_triplets(trip, neighborhood_size, rotations*n_planes, vecInt);
}
#if defined(USE_OPENMP_FOR_NORMEST)
#pragma omp parallel for schedule(guided)
#endif
for (int per = 0; per < pts.rows(); per++)
{
//index of the point
int n = permutation[per];
//getting the list of neighbors
std::vector<Eigen::MatrixX3d::Index> pointIdxSearch;
std::vector<double> pointSquaredDistance;
const Eigen::Vector3d& pt_query = pts.row(n);
pointIdxSearch.resize(neighborhood_size);
pointSquaredDistance.resize(neighborhood_size);
tree.index->knnSearch(&pt_query[0], neighborhood_size, &pointIdxSearch[0], &pointSquaredDistance[0]);
if (use_density)
list_of_triplets(trip, rotations*n_planes, pointIdxSearch, vecInt);
//get the points
size_t points_size = pointIdxSearch.size();
Eigen::MatrixX3d points(points_size, 3);
for (size_t pt = 0; pt<pointIdxSearch.size(); pt++)
{
points.row(pt) = pts.row(pointIdxSearch[pt]);
}
std::vector<Eigen::Vector3d> normals_vec(rotations);
std::vector<float> normals_conf(rotations);
for (int i = 0; i < rotations; i++)
{
Eigen::MatrixX3i triplets = trip.block(i*n_planes, 0, n_planes, 3);
for (size_t pt = 0; pt < points_size; pt++)
{
points.row(pt) = rotMat[(n + i) % rotMat.size()] * points.row(pt).transpose();
}
normals_conf[i] = normal_at_point(d1, d2, points, n, triplets, conf_interv);
for (size_t pt = 0; pt < points_size; pt++)
{
points.row(pt) = pts.row(pointIdxSearch[pt]);
}
normals_vec[i] = rotMatInv[(n + i) % rotMat.size()] * nls.row(n).transpose();
}
nls.row(n) = normal_selection(rotations, normals_vec, normals_conf);
if (progressCallback)
{
progressCallback(++progress);
}
}
}
private:
// PRIVATE METHODS
/*!
* fills a vector of random rotation matrix and their inverse
* @param rotMat : table matrices to fill with rotations
* @param rotMatInv : table matrices to fill with inverse rotations
* @param rotations : number of rotations
*/
inline void generate_rotation_matrix(std::vector<Eigen::Matrix3d> &rotMat, std::vector<Eigen::Matrix3d> &rotMatInv, int rotations)
{
rotMat.clear();
rotMatInv.clear();
if (rotations == 0)
{
Eigen::Matrix3d rMat;
rMat << 1, 0, 0, 0, 1, 0, 0, 0, 1;
rotMat.push_back(rMat);
rotMatInv.push_back(rMat);
}
else
{
for (int i = 0; i < rotations; i++)
{
double theta = static_cast<double>(rand()) / RAND_MAX * 2 * M_PI;
double phi = static_cast<double>(rand()) / RAND_MAX * 2 * M_PI;
double psi = static_cast<double>(rand()) / RAND_MAX * 2 * M_PI;
Eigen::Matrix3d Rt;
Eigen::Matrix3d Rph;
Eigen::Matrix3d Rps;
Rt << 1, 0, 0, 0, cos(theta), -sin(theta), 0, sin(theta), cos(theta);
Rph << cos(phi), 0, sin(phi), 0, 1, 0, -sin(phi), 0, cos(phi);
Rps << cos(psi), -sin(psi), 0, sin(psi), cos(psi), 0, 0, 0, 1;
Eigen::Matrix3d Rtinv;
Eigen::Matrix3d Rphinv;
Eigen::Matrix3d Rpsinv;
Rtinv << 1, 0, 0, 0, cos(theta), sin(theta), 0, -sin(theta), cos(theta);
Rphinv << cos(phi), 0, -sin(phi), 0, 1, 0, sin(phi), 0, cos(phi);
Rpsinv << cos(psi), sin(psi), 0, -sin(psi), cos(psi), 0, 0, 0, 1;
Eigen::Matrix3d rMat = Rt*Rph*Rps;
Eigen::Matrix3d rMatInv = Rpsinv*Rphinv*Rtinv;
rotMat.push_back(rMat);
rotMatInv.push_back(rMatInv);
}
}
}
/*!
* generates a list of triplets
* @param triplets : table of 3-vector to fill with the indexes of the points
* @param number_of_points : number of points to consider
* @param triplet_number : number of triplets to generate
* @param vecRandInt : table of random int
*/
inline void list_of_triplets(Eigen::MatrixX3i &triplets,
size_t number_of_points,
size_t triplet_number,
const std::vector<size_t> &vecRandInt)
{
size_t S = vecRandInt.size();
triplets.resize(triplet_number, 3);
size_t pos = vecRandInt[0] % S;
for (size_t i = 0; i < triplet_number; i++)
{
do
{
triplets(i, 0) = static_cast<int>(vecRandInt[pos % S] % number_of_points);
triplets(i, 1) = static_cast<int>(vecRandInt[(pos + vecRandInt[(pos + 1) % S]) % S] % number_of_points);
triplets(i, 2) = static_cast<int>(vecRandInt[(pos + vecRandInt[(pos + 1 + vecRandInt[(pos + 2) % S]) % S]) % S] % number_of_points);
pos += vecRandInt[(pos + 3) % S] % S;
}
while (triplets(i, 0) == triplets(i, 1) || triplets(i, 1) == triplets(i, 2) || triplets(i, 2) == triplets(i, 0));
}
}
/*!
* dichotomic search in sorted vector, find the nearest neighbor
* @param elems : sorted vector containing the elements for comparison
* @param d : element to search for in elems
* @return the index of the nearest neighbor of d in elems
*/
//return the index of the nearest element in the vector
int dichotomic_search_nearest(const std::vector<double> elems, double d){
size_t i1 = 0;
size_t i2 = elems.size() - 1;
size_t i3;
while(i2 > i1){
i3 = (i1+i2)/2;
if(elems[i3] == d){break;}
if(d < elems[i3]){i2 = i3;}
if(d > elems[i3]){i1 = i3;}
}
return static_cast<int>(i3);
}
/*!
* generates a list of triplets
* @param triplets : table of 3-vector to fill with the indexes of the points
* @param triplet_number : number of triplets to generate
* @param pointIdxSearch : index of the points used for triplets
* @param vecRandInt : table of random int
*/
inline void list_of_triplets(Eigen::MatrixX3i &triplets,
size_t triplet_number,
const std::vector<Eigen::MatrixX3d::Index>& pointIdxSearch,
const std::vector<size_t> &vecRandInt)
{
std::vector<double> dists;
double sum = 0;
for (size_t i = 0; i < pointIdxSearch.size(); i++)
{
sum += densities[pointIdxSearch[i]];
dists.push_back(sum);
}
size_t S = vecRandInt.size();
size_t number_of_points = pointIdxSearch.size();
triplets.resize(triplet_number, 3);
size_t pos = vecRandInt[0] % S;;
for (size_t i = 0; i < triplet_number; i++)
{
do
{
double d = (vecRandInt[pos % S] + 0.) / RAND_MAX *sum;
triplets(i, 0) = dichotomic_search_nearest(dists, d);
d = (vecRandInt[(pos + vecRandInt[(pos + 1) % S]) % S] + 0.) / RAND_MAX;
triplets(i, 1) = dichotomic_search_nearest(dists, d);
d = (vecRandInt[(pos + vecRandInt[(pos + 1 + vecRandInt[(pos + 2) % S]) % S]) % S] + 0.) / RAND_MAX;
triplets(i, 2) = dichotomic_search_nearest(dists, d);
pos += vecRandInt[(pos + 3) % S] % S;
}
while (triplets(i, 0) == triplets(i, 1) || triplets(i, 1) == triplets(i, 2) || triplets(i, 2) == triplets(i, 0));
}
}
/*!
* Compute the normal by filling an accumulator for a given neighborhood
* @param d1 - First dimension of the accumulator
* @param d2 - Second dimension of the accumulator
* @param points - table of neighbors
* @param n - index of the point where the normal is computed
* @param triplets - table of triplets
* @param conf_interv - table of confidence intervals
*/
float normal_at_point(
const int d1, const int d2,
const Eigen::MatrixX3d& points,
int n,
Eigen::MatrixX3i &triplets,
std::vector<float> &conf_interv)
{
if (points.size() < 3)
{
nls.row(n).setZero();
return 0;
}
//creation and initialization accumulators
std::vector<double> votes(d1*d2);
std::vector<Eigen::Vector3d> votesV(d1*d2);
for (int i = 0; i < d1; i++)
{
for (int j = 0; j < d2; j++)
{
votes[i + j*d1] = 0;
votesV[i + j*d1] = Eigen::Vector3d(0, 0, 0);
}
}
float max1 = 0;
int i1 = 0, i2 = 0;
int j1 = 0, j2 = 0;
for (int n_try = 0; n_try < n_planes; n_try++)
{
int p0 = triplets(n_try,0);
int p1 = triplets(n_try,1);
int p2 = triplets(n_try,2);
Eigen::Vector3d v1 = points.row(p1).transpose()-points.row(p0).transpose();
Eigen::Vector3d v2 = points.row(p2).transpose()-points.row(p0).transpose();
Eigen::Vector3d Pn = v1.cross(v2);
Pn.normalize();
if(Pn.dot(points.row(p0).transpose())>0){
Pn = -Pn;
}
double phi = acos(Pn[2]);
double dphi = M_PI / n_phi;
int posp = static_cast<int>(floor((phi + dphi / 2) * n_phi / M_PI));
int post;
if (posp == 0 || posp == n_phi)
{
post = 0;
}
else
{
double theta = acos(Pn[0] / sqrt(Pn[0] * Pn[0] + Pn[1] * Pn[1]));
if (Pn[1] < 0)
{
theta *= -1;
theta += 2 * M_PI;
}
double dtheta = M_PI / (n_phi*sin(posp*dphi));
post = static_cast<int>(floor((theta + dtheta / 2) / dtheta)) % (2 * n_phi);
}
post = std::max(0, std::min(2 * n_phi - 1, post));
posp = std::max(0, std::min(n_phi, posp));
votes[post + posp*d1] += 1.;
votesV[post + posp*d1] += Pn;
max1 = votes[i1 + j1*d1] / (n_try + 1);
float max2 = votes[i2 + j2*d1] / (n_try + 1);
float votes_val = votes[post + posp*d1] / (n_try + 1);
if (votes_val > max1)
{
max2 = max1;
i2 = i1;
j2 = j1;
max1 = votes_val;
i1 = post;
j1 = posp;
}
else if (votes_val > max2 && post != i1 && posp != j1)
{
max2 = votes_val;
i2 = post;
j2 = posp;
}
if (max1 - conf_interv[n_try] > max2)
{
break;
}
}
votesV[i1 + j1*d1].normalize();
nls.row(n) = votesV[i1 + j1*d1];
return max1;
}
/*!
* Compute the normal depending of the estimation choice (mean, best, cluster)
* @param rotations - number of rotations
* @param normals_vec - table of estimated normals for the point
* @param normals_conf - table of the confidence of normals
*/
inline Eigen::Vector3d normal_selection(int rotations,
std::vector<Eigen::Vector3d> &normals_vec,
const std::vector<float> &normals_conf){
std::vector<bool> normals_use(rotations, true);
//alignement of normals
for (int i = 1; i < rotations; i++)
{
if (normals_vec[0].dot(normals_vec[i]) < 0)
{
normals_vec[i] *= -1;
}
}
Eigen::Vector3d normal_final;
std::vector< std::pair<Eigen::Vector3d, float> > normals_fin;
int number_to_test = rotations;
while (number_to_test > 0)
{
//getting the max
float max_conf = 0;
int idx = 0;
for (int i = 0; i < rotations; i++)
{
if (normals_use[i] && normals_conf[i] > max_conf)
{
max_conf = normals_conf[i];
idx = i;
}
}
normals_fin.push_back(std::pair<Eigen::Vector3d, float>(normals_vec[idx] * normals_conf[idx], normals_conf[idx]));
normals_use[idx] = false;
number_to_test--;
for (int i = 0; i < rotations; i++)
{
if (normals_use[i] && acos(normals_vec[idx].dot(normals_vec[i])) < tol_angle_rad)
{
normals_use[i] = false;
number_to_test--;
normals_fin.back().first += normals_vec[i] * normals_conf[i];
normals_fin.back().second += normals_conf[i];
}
}
}
normal_final = normals_fin[0].first;
float conf_fin = normals_fin[0].second;
for (size_t i = 1; i < normals_fin.size(); i++)
{
if (normals_fin[i].second > conf_fin)
{
conf_fin = normals_fin[i].second;
normal_final = normals_fin[i].first;
}
}
normal_final.normalize();
return normal_final;
}
};
#endif