forked from aboulch/normals_Hough
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathpc_io.cpp
executable file
·75 lines (69 loc) · 2.64 KB
/
pc_io.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
/* License Information
*
* Copyright (C) ONERA, The French Aerospace Lab
* Author: Alexandre BOULCH
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this
* software and associated documentation files (the "Software"), to deal in the Software
* without restriction, including without limitation the rights to use, copy, modify, merge,
* publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
* to whom the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
* PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
* OR OTHER DEALINGS IN THE SOFTWARE.
*
*
* Note that this library relies on external libraries subject to their own license.
* To use this software, you are subject to the dependencies license, these licenses
* applies to the dependency ONLY and NOT this code.
* Please refer below to the web sites for license informations:
* PCL, BOOST,NANOFLANN, EIGEN, LUA TORCH
*
* When using the software please aknowledge the corresponding publication:
* "Deep Learning for Robust Normal Estimation in Unstructured Point Clouds "
* by Alexandre Boulch and Renaud Marlet
* Symposium of Geometry Processing 2016, Computer Graphics Forum
*/
#include "pc_io.h"
#include <fstream>
#include <iostream>
#include <sstream>
#include <vector>
using namespace std;
void pc_load(const std::string& filename,Eigen::MatrixX3d& pc){
ifstream istr(filename.c_str());
vector<Eigen::Vector3d> points;
string line;
double x,y,z;
while(getline(istr, line))
{
stringstream sstr("");
sstr << line;
sstr >> x >> y >> z;
points.push_back(Eigen::Vector3d(x,y,z));
}
istr.close();
pc.resize(points.size(),3);
for(int i=0; i<points.size(); i++){
pc.row(i) = points[i];
}
}
void pc_save(const std::string& filename,const Eigen::MatrixX3d& pc, const Eigen::MatrixX3d& normals){
ofstream ofs(filename.c_str());
for(int i=0; i<pc.rows(); i++){
ofs << pc(i,0) << " ";
ofs << pc(i,1) << " ";
ofs << pc(i,2) << " ";
ofs << normals(i,0) << " ";
ofs << normals(i,1) << " ";
ofs << normals(i,2) << endl;
}
ofs.close();
}