forked from drouhling/LaSalle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pendulum.v
979 lines (915 loc) · 41.2 KB
/
pendulum.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
Require Import Reals Lra.
From mathcomp Require Import ssreflect ssrfun eqtype ssrbool ssrnat bigop ssralg
matrix fintype zmodp seq.
Require Import lasalle tychonoff coquelicotComplements vect.
From Coquelicot Require Import Hierarchy Rcomplements Continuity Rbar Derive
Lub.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import Classical_Prop Classical_Pred_Type.
Local Open Scope seq_scope.
Local Open Scope ring_scope.
Local Open Scope classical_set_scope.
Notation "p [ i ]" := (p 0 (i%:R)) (at level 10).
Local Open Scope R_scope.
Section System.
Parameter m M l g : posreal.
Variable ke kv kx kd : posreal.
Let U := 'rV[R]_5.
(* p = (x, x', cos theta, sin theta, theta') *)
Definition E (p : U) :=
(1 / 2) * ((M + m) * (p[1] ^ 2) + m * (l ^ 2) * (p[4] ^ 2)) +
m * l * p[1] * p[2] * p[4] + m * l * g * (p[2] - 1).
Definition fctrl (p : U) :=
(kv * m * p[3] * (g * p[2] - l * (p[4] ^ 2)) -
(M + m * (p[3] ^ 2)) * (kx * p[0] + kd * p[1])) /
(kv + (M + m * (p[3] ^ 2)) * ke * (E p)).
Definition Fpendulum (p : U) : U :=
\row_(i < 5) nth 0
[:: p[1]
; ((m * p[3] * (l * (p[4] ^ 2) - g * p[2]) + (fctrl p)) /
(M + m * (p[3] ^ 2)))
; - p[3] * p[4]
; p[2] * p[4]
; (((M + m) * g * p[3] - p[2] * (m * l * (p[4] ^ 2) * p[3] + (fctrl p))) /
(l * (M + m * (p[3] ^ 2))))] i.
Definition V (p : U) :=
(ke / 2) * ((E p) ^ 2) + (kv / 2) * (p[1] ^ 2) + (kx / 2) * (p[0] ^ 2).
Lemma V_continuous (p : U) : continuous V p.
Proof. exact/filterdiff_continuous/ex_diff. Qed.
Variable k0 : R.
Let B := ke * ((Rmin (kv / (ke * (M + m))) (2 * m * g * l)) ^ 2) / 2.
(* restriction to make fctrl smooth *)
Hypothesis k0_valid : k0 < B.
Definition K : set U :=
[set p : U | (p[2] ^ 2) + (p[3] ^ 2) = 1 /\ V p <= k0].
Lemma pow_continuous n x : continuous (pow^~ n) x.
Proof.
apply: ex_derive_continuous; exists (n * x ^ n.-1); apply: deriv_eq.
by rewrite Rmult_1_r.
Qed.
Hint Resolve cond_pos.
Lemma is_closed_circ : is_closed ([set p : U | (p[2] ^ 2) + (p[3] ^ 2) = 1]).
Proof.
move=> p clcircp; apply: Req_le_aux => e.
have /pow_continuous [e1 p2e1_sp2he] :=
locally_ball (p[2] ^ 2) (mkposreal _ (is_pos_div_2 e)).
have /pow_continuous [e2 p3e2_sp3he] :=
locally_ball (p[3] ^ 2) (mkposreal _ (is_pos_div_2 e)).
have me12_gt0 : 0 < Rmin e1 e2 by apply: Rmin_pos.
have [q [circq pme12_q]] :
[set p : U | (p[2] ^ 2) + (p[3] ^ 2) = 1] `&`
ball p (mkposreal _ me12_gt0) !=set0 by apply/clcircp/locally_ball.
rewrite -circq /Rminus Ropp_plus_minus_distr Rplus_assoc
-[X in _ + X]Rplus_assoc [(p[3] ^ 2) + _]Rplus_comm Rplus_assoc -Rplus_assoc
[_ e]double_var.
apply: Rle_trans (Rabs_triang _ _) _; apply: Rplus_le_compat; apply: Rlt_le.
rewrite Rabs_minus_sym; apply: p2e1_sp2he; apply: ball_le (Rmin_l _ e2) _ _.
exact: pme12_q.
rewrite Rabs_minus_sym; apply: p3e2_sp3he; apply: ball_le (Rmin_r e1 _) _ _.
exact: pme12_q.
Qed.
Lemma is_closed_Vpreim_lek0 : is_closed (V @^-1` (Rle^~ k0)).
Proof.
apply: continuous_closed_preimage; first exact: V_continuous.
apply: closed_is_closed; apply: closed_le.
Qed.
Lemma is_closed_K : is_closed K.
Proof. exact: is_closed_setI is_closed_circ is_closed_Vpreim_lek0. Qed.
Lemma bounded_poly a b c d :
0 < a -> exists M, forall x, a * (x ^ 2) - (b * Rabs x) - c < d -> Rabs x < M.
Proof.
move=> agt0.
have ptoinfty : (fun x => a * (x ^ 2) - (b * Rabs x) - c) @ +oo --> +oo.
move=> A [M sgtMA].
exists (Rmax (sqrt (Rmax (M + c) 0)) (((sqrt (Rmax (M + c) 0)) + b) / a)).
move=> x /Rmax_Rlt [Mpcltx Mpcltaxpb]; apply: sgtMA.
have xgt0 : 0 < x by apply: Rle_lt_trans (sqrt_pos _) Mpcltx.
rewrite Rabs_pos_eq; last exact/Rlt_le.
apply/Rlt_minus_r.
rewrite /= Rmult_1_r -Rmult_assoc /Rminus Ropp_mult_distr_l
-Rmult_plus_distr_r.
have : sqrt (Rmax (M + c) 0) < a * x - b.
by rewrite Rmult_comm; apply/Rlt_minus_r/Rlt_div_l.
move=> {Mpcltaxpb} Mpcltaxpb; move: Mpcltx => /Rlt_le Mpclex.
apply: Rle_lt_trans (Rmult_lt_compat_r _ _ _ xgt0 Mpcltaxpb).
apply: Rle_trans (Rmult_le_compat_l _ _ _ (sqrt_pos _) Mpclex).
by rewrite sqrt_def; [apply: Rmax_l|apply: Rmax_r].
have mtoinfty : (fun x => a * (x ^ 2) - (b * Rabs x) - c) @ -oo --> +oo.
move=> A /ptoinfty [M sgtMAp]; exists (- M) => x.
rewrite -[X in X < _]Ropp_involutive => /Ropp_lt_cancel /sgtMAp.
by rewrite -Rsqr_pow2 -Rsqr_neg Rsqr_pow2 Rabs_Ropp.
rewrite /filter_le /filtermap /= in ptoinfty.
have dleatinfty : [filter of +oo] (Rle d) by exists d => ? /Rlt_le.
have /ptoinfty [M1 sgtM1dlep] := dleatinfty.
have /mtoinfty [M2 sltM2dlep] := dleatinfty.
exists ((Rmax M1 (- M2)) + 1) => x pxltd.
apply: Rle_lt_trans (Rlt_plus_1 _); apply/Rnot_gt_le => /Rmax_Rlt [M1ltx M2ltx].
move: pxltd; apply/Rge_not_lt/Rle_ge; case: (Rle_lt_dec 0 x) => [xge0|xlt0].
by apply: sgtM1dlep; rewrite -(Rabs_pos_eq _ xge0).
by apply/sltM2dlep/Ropp_lt_cancel; rewrite -[X in _ < X](Rabs_left _ xlt0).
Qed.
Lemma is_bounded_K : is_bounded K.
Proof.
have [M1 K0123ltM1] : exists M1, forall p, K p ->
Rabs (p[0]) < M1 /\ Rabs (p[1]) < M1 /\ Rabs (p[2]) < M1 /\ Rabs (p[3]) < M1.
exists (Rmax 2 (Rmax (sqrt (2 * B / kv)) (sqrt (2 * B / kx)))).
move=> p [circp Vps]; split.
do 2 ?[apply: Rlt_le_trans (Rmax_r _ _)].
rewrite -sqrt_Rsqr_abs Rsqr_pow2; apply: sqrt_lt_1_alt.
split; first exact: pow2_ge_0.
apply/(Rlt_div_r (p[0] ^ 2)) => //.
rewrite [X in _ < X]Rmult_comm; apply/Rlt_div_l; first exact/Rlt_gt/Rlt_0_2.
rewrite [_ * _ / _]Rmult_assoc Rmult_comm.
apply: Rle_lt_trans k0_valid; apply: Rle_trans Vps.
rewrite -[X in X <= _]Rplus_0_l; apply: Rplus_le_compat_r.
by apply: Rplus_le_le_0_compat; apply: Rmult_le_pos (pow2_ge_0 _);
apply: Rlt_le; apply: is_pos_div_2.
split.
apply: Rlt_le_trans (Rmax_r _ _); apply: Rlt_le_trans (Rmax_l _ _).
rewrite -sqrt_Rsqr_abs Rsqr_pow2; apply: sqrt_lt_1_alt.
split; first exact: pow2_ge_0.
apply/(Rlt_div_r (p[1] ^ 2)) => //.
rewrite [X in _ < X]Rmult_comm; apply/Rlt_div_l; first exact/Rlt_gt/Rlt_0_2.
rewrite [_ * _ / _]Rmult_assoc Rmult_comm.
apply: Rle_lt_trans k0_valid; apply: Rle_trans Vps.
rewrite -[X in X <= _]Rplus_0_l [X in _ <= X]Rplus_comm -Rplus_assoc.
apply: Rplus_le_compat_r.
by apply: Rplus_le_le_0_compat; apply: Rmult_le_pos (pow2_ge_0 _);
apply: Rlt_le; apply: is_pos_div_2.
split; apply: Rlt_le_trans (Rmax_l _ _); apply: Rle_lt_trans (Rlt_n_Sn 1);
rewrite -sqrt_Rsqr_abs Rsqr_pow2 -sqrt_1 -circp;
apply: sqrt_le_1_alt.
rewrite -[X in X <= _]Rplus_0_r; apply: Rplus_le_compat_l.
exact: pow2_ge_0.
rewrite -[X in X <= _]Rplus_0_l; apply: Rplus_le_compat_r.
exact: pow2_ge_0.
suff [M2 K4ltM2] : exists M2, forall p, K p -> Rabs (p[4]) < M2.
exists (Rmax M1 M2) => p Kp.
have /K0123ltM1 [p0ltM1 [p1ltM1 [p2ltM1 p3ltM1]]] := Kp.
have /K4ltM2 p4ltM2 := Kp.
apply: bigRmax_lt.
apply: Rlt_le_trans (Rmax_l _ _); apply: Rle_lt_trans p0ltM1.
exact: Rabs_pos.
case; do 4 ?[case; first by move=> ?; rewrite -[Ordinal _]natr_Zp;
apply: Rlt_le_trans (Rmax_l _ _)].
case; last by move=> n ltnp5; exfalso; move: ltnp5; rewrite !ltnS ltn0.
by move=> ?; rewrite -[Ordinal _]natr_Zp; apply: Rlt_le_trans (Rmax_r _ _).
have hmslgt0 : 0 < (m * (l ^ 2) / 2).
apply: Rdiv_lt_0_compat Rlt_0_2; apply: Rmult_lt_0_compat => //.
by apply/pow2_gt_0/Rgt_not_eq.
have [M2 sEsltM2] := bounded_poly (m * l * (M1 ^ 2)) (m * l * g * (M1 + 1))
(sqrt (2 * B / ke)) hmslgt0.
exists M2 => p Kp; apply: sEsltM2.
have [_ Vps] := Kp; have /K0123ltM1 [_ [p1ltM1 [p2ltM1 _]]] := Kp.
have : E p < sqrt (2 * B / ke).
apply: Rle_lt_trans (Rle_abs _) _.
rewrite -sqrt_Rsqr_abs Rsqr_pow2; apply: sqrt_lt_1_alt.
split; first exact: pow2_ge_0.
apply/(Rlt_div_r ((E p) ^ 2)) => //.
rewrite [X in _ < X]Rmult_comm; apply/Rlt_div_l; first exact/Rlt_gt/Rlt_0_2.
rewrite [_ * _ / _]Rmult_assoc Rmult_comm.
apply: Rle_lt_trans k0_valid; apply: Rle_trans Vps.
rewrite -[X in X <= _]Rplus_0_r [V _]Rplus_assoc; apply: Rplus_le_compat_l.
by apply: Rplus_le_le_0_compat; apply: Rmult_le_pos (pow2_ge_0 _);
apply: Rlt_le; apply: is_pos_div_2.
apply: Rle_lt_trans; apply: Rplus_le_compat; last first.
apply: Rlt_le; rewrite !Ropp_mult_distr_r; apply: Rmult_lt_compat_l.
by do 2 ?[apply: Rmult_lt_0_compat => //].
rewrite Ropp_plus_distr; apply: Rplus_lt_compat_r.
by have /Rabs_def2 [] := p2ltM1.
rewrite Rmult_plus_distr_l [1 / 2 * _ + _]Rplus_comm Rplus_assoc.
have -> : 1 / 2 * (m * (l ^ 2) * (p[4] ^ 2)) = m * (l ^ 2) / 2 * (p[4] ^ 2).
by field.
apply: Rplus_le_compat_l.
rewrite -[X in X <= _]Rplus_0_l; apply: Rplus_le_compat.
apply: Rmult_le_pos; first exact: Rdiv_le_0_compat Rle_0_1 Rlt_0_2.
apply: Rmult_le_pos (pow2_ge_0 _).
by apply: Rplus_le_le_0_compat; apply/Rlt_le.
rewrite Rmult_assoc Ropp_mult_distr_r [X in _ <= X]Rmult_assoc
[X in _ <= X]Rmult_assoc.
apply: Rmult_le_compat_l; first by apply: Rmult_le_pos; apply: Rlt_le.
case: (Rle_lt_dec 0 (p[4])) => [p4ge0|p4lt0].
rewrite Ropp_mult_distr_l -Rmult_assoc Rabs_pos_eq => //.
apply: Rmult_le_compat_r p4ge0 _; rewrite /= Rmult_1_r.
case: (Rle_lt_dec 0 (p[1])) => [p1ge0|/Rlt_le p1le0].
rewrite Ropp_mult_distr_r.
have /Rabs_def2 [_ /Rlt_le p2geoM] := p2ltM1.
apply: Rle_trans (Rmult_le_compat_l _ _ _ p1ge0 p2geoM).
rewrite Rmult_comm [X in _ <= X]Rmult_comm.
apply: Rmult_le_compat_neg_l; last by have /Rabs_def2 [/Rlt_le] := p1ltM1.
rewrite -Ropp_0; apply/Ropp_le_contravar/Rlt_le.
by apply: Rle_lt_trans p1ltM1; apply: Rabs_pos.
rewrite Ropp_mult_distr_l.
have /Rabs_def2 [/Rlt_le p2leM _] := p2ltM1.
apply: Rle_trans (Rmult_le_compat_neg_l _ _ _ p1le0 p2leM).
apply: Rmult_le_compat_r; last by have /Rabs_def2 [_ /Rlt_le] := p1ltM1.
by apply: Rlt_le; apply: Rle_lt_trans p1ltM1; apply: Rabs_pos.
rewrite (Rabs_left _ p4lt0) Ropp_mult_distr_r Ropp_involutive -Rmult_assoc.
rewrite Rmult_comm [X in _ <= X]Rmult_comm /= Rmult_1_r.
apply: Rmult_le_compat_neg_l; first exact: Rlt_le.
case: (Rle_lt_dec 0 (p[1])) => [p1ge0|/Rlt_le p1le0].
have /Rabs_def2 [/Rlt_le p2leM1 _] := p2ltM1.
apply: Rle_trans (Rmult_le_compat_l _ _ _ p1ge0 p2leM1) _.
apply: Rmult_le_compat_r; last by have /Rabs_def2 [/Rlt_le] := p1ltM1.
by apply: Rlt_le; apply: Rle_lt_trans p1ltM1; apply: Rabs_pos.
have /Rabs_def2 [_ /Rlt_le p2geoM1] := p2ltM1.
apply: Rle_trans (Rmult_le_compat_neg_l _ _ _ p1le0 p2geoM1) _.
rewrite -Ropp_mult_distr_r Ropp_mult_distr_l.
apply: Rmult_le_compat_r.
by apply: Rlt_le; apply: Rle_lt_trans p1ltM1; apply: Rabs_pos.
rewrite -[X in _ <= X]Ropp_involutive; apply: Ropp_le_contravar.
by have /Rabs_def2 [_ /Rlt_le] := p1ltM1.
Qed.
Lemma Kco : compact K.
Proof. exact: bounded_closed_compact is_bounded_K is_closed_K. Qed.
Lemma Mp_ms_gt0 (p : U) : 0 < M + m * (p[3] ^ 2).
Proof.
apply: Rplus_lt_le_0_compat => //.
by apply: Rmult_le_pos; [apply/Rlt_le|apply: pow2_ge_0].
Qed.
Lemma E_small p : V p < B -> Rabs (E p) < kv / (ke * (M + m)).
Proof.
move=> Vp_s; rewrite -[X in _ < X]Rabs_pos_eq; last first.
apply: Rdiv_le_0_compat; first exact/Rlt_le.
by apply: Rmult_lt_0_compat => //; apply: Rplus_lt_0_compat.
apply: Rsqr_lt_abs_0; rewrite !Rsqr_pow2.
have gt20 : 2 > 0 by apply/Rlt_gt/Rlt_0_2.
have : 2 * (V p) / ke < (kv / (ke * (M + m))) ^ 2.
apply/Rlt_div_l => //; rewrite Rmult_comm; apply/Rlt_div_r => //.
apply: Rlt_le_trans Vp_s _.
rewrite /B Rmult_comm ![_ * _ / _]Rmult_assoc; apply/Rmult_le_compat_r.
by apply: Rdiv_le_0_compat; [apply: Rlt_le|apply: Rgt_lt].
apply: pow_incr; split; last exact: Rmin_l.
apply: Rmin_glb.
apply: Rdiv_le_0_compat; first exact: Rlt_le.
by apply: Rmult_lt_0_compat => //; apply: Rplus_lt_0_compat.
by do 3 ?[apply: Rmult_le_pos; last exact: Rlt_le]; apply: Rlt_le.
apply: Rle_lt_trans; apply/(Rle_div_r (_ ^ 2)) => //.
rewrite [X in _ <= X]Rmult_comm; apply/Rle_div_l; first exact/Rlt_gt/Rlt_0_2.
rewrite [(_ ^ 2) * _ / _]Rmult_assoc Rmult_comm /V Rplus_assoc Rplus_comm.
apply/Rle_minus_l; rewrite Rminus_eq_0.
by apply: Rplus_le_le_0_compat; apply: Rmult_le_pos; try exact: pow2_ge_0;
apply: Rdiv_le_0_compat; try exact: Rlt_0_2; apply/Rlt_le.
Qed.
Lemma fctrl_wdef (p : U) : (p[2] ^ 2) + (p[3] ^ 2) = 1 -> V p < B ->
kv + (M + m * (p[3] ^ 2)) * ke * (E p) <> 0.
Proof.
move=> circp Vp_s; rewrite Rmult_comm.
move/Rplus_opp_r_uniq/(Rmult_eq_compat_r (/ ((M + m * (p[3] ^ 2)) * ke))).
have Mmp3ke_gt0 : 0 < (M + m * p [3] ^ 2) * ke.
by apply: Rmult_lt_0_compat => //; apply: Mp_ms_gt0.
rewrite Rmult_assoc Rinv_r; last exact/not_eq_sym/Rlt_not_eq.
rewrite Rmult_1_r => Epval; have /E_small := Vp_s.
rewrite Epval -Ropp_mult_distr_l Rabs_Ropp Rabs_pos_eq; last first.
apply: Rdiv_le_0_compat; first exact/Rlt_le.
by apply: Rmult_lt_0_compat => //; apply: Mp_ms_gt0.
move/(Rmult_lt_reg_l _ _ _ (cond_pos _))/(Rinv_lt_cancel _ _ Mmp3ke_gt0).
rewrite Rmult_comm; move/(Rmult_lt_reg_r _ _ _ (cond_pos _))/Rplus_lt_reg_l.
rewrite -[X in X < _]Rmult_1_r; move/(Rmult_lt_reg_l _ _ _ (cond_pos _)).
apply: Rle_not_lt; rewrite -circp.
by apply/Rle_minus_l; rewrite Rminus_eq_0; apply: pow2_ge_0.
Qed.
(* TODO: show that Fpendulum is smooth in K and remove these hypotheses using
Cauchy-Lipschitz *)
Variable (sol : U -> R -> U).
Hypothesis (sol0 : forall p, sol p 0 = p).
Hypothesis solP : forall y, K (y 0) -> is_sol Fpendulum y <-> y = sol (y 0).
Hypothesis sol_cont : forall t, continuous_on K (sol^~ t).
Lemma circ_invar p :
K p -> forall t, 0 <= t -> (sol p t)[2] ^ 2 + (sol p t)[3] ^ 2 = 1.
Proof.
move=> Kp t tge0; have [circp _] := Kp.
rewrite -circp -[in RHS](sol0 p); apply: Logic.eq_sym.
case: (Rle_lt_or_eq_dec _ _ tge0); last by move<-.
apply: (eq_is_derive (fun s => ((sol p s)[2] ^ 2) + ((sol p s)[3] ^ 2))).
move=> s [sge0 _]; have [_ /(_ _ sge0) sol_ats] := sol_is_sol sol0 solP Kp.
by apply: deriv_eq; rewrite !mxE /plus /zero /=; ring.
Qed.
Lemma deriv_Esol p t :
K p -> 0 <= t -> deriv (E \o (sol p)) t ((sol p t)[1] * fctrl (sol p t)).
Proof.
move=> Kp tge0; have [_ /(_ _ tge0) sol_att] := sol_is_sol sol0 solP Kp.
apply: deriv_eq.
have : ((sol p t)[2] ^ 2) + ((sol p t)[3] ^ 2) = 1 by apply: circ_invar.
rewrite -{1}[1](Rplus_minus ((sol p t)[2] ^ 2))=> /Rplus_eq_reg_l circp.
rewrite !mxE circp /zero /minus /plus /opp /=; field.
split.
by rewrite -{2}[(sol p t)[2]]Rmult_1_r -circp; apply/Rgt_not_eq/Mp_ms_gt0.
apply/Rgt_not_eq => //; field_simplify; lra.
Qed.
Lemma is_deriv_Vsol p t :
K p -> 0 <= t -> V (sol p t) < B ->
deriv (V \o (sol p)) t (- kd * ((sol p t)[1] ^ 2)).
Proof.
move=> Kp tge0 Vsolpt_s.
have [_ /(_ _ tge0) sol_att] := sol_is_sol sol0 solP Kp.
have Esol' := deriv_Esol Kp tge0; apply: deriv_eq.
rewrite !mxE /zero /minus /plus /opp /= /fctrl; field.
split.
have circp : ((sol p t)[2] ^ 2) + ((sol p t)[3] ^ 2) = 1 by apply: circ_invar.
exact: fctrl_wdef.
by rewrite -{2}[(sol p t)[3]]Rmult_1_r; apply/not_eq_sym/Rlt_not_eq/Mp_ms_gt0.
Qed.
Lemma defset_invar p : K p -> forall t, 0 <= t ->
((sol p t)[2] ^ 2) + ((sol p t)[3] ^ 2) = 1 /\ V (sol p t) < B.
Proof.
move=> Kp t tge0; split; first exact: circ_invar.
set A := [set t | 0 <= t /\ B <= V (sol p t)].
have glbA := Glb_Rbar_correct A.
suff t_ltA : Rbar_lt t (Glb_Rbar A).
apply: Rnot_le_lt => Vsolpt_ns; apply: Rbar_lt_not_le t_ltA _.
exact: (proj1 glbA).
have : Glb_Rbar A <> m_infty.
move=> glbA_minfty; rewrite glbA_minfty in glbA.
have : Rbar_le 0 m_infty by apply: (proj2 glbA) => ? [].
exact: Rbar_lt_not_le.
move: glbA; case: (Glb_Rbar A) => //= s s_glbA _; exfalso=> {t tge0}.
have sge0 : Rbar_le 0 s by apply: (proj2 s_glbA) => ? [].
have Vsolp_deriv t : 0 <= t -> ex_derive (V \o (sol p)) t.
move=> tge0; have [_ /(_ _ tge0) sol_att] := sol_is_sol sol0 solP Kp.
exact: ex_deriv.
have Vsolps_geB : B <= V (sol p s).
case: (Rle_lt_dec B (V (sol p s))) => // Vsolps_ltB; exfalso.
have BmVsolps_gt0 : 0 < B - V (sol p s) by apply: Rlt_Rminus.
have Vsolp_conts : continuous (V \o (sol p)) s.
by apply/ex_derive_continuous/Vsolp_deriv.
have /Vsolp_conts := locally_ball (V (sol p s)) (mkposreal _ BmVsolps_gt0).
move=> [e /= se_Vsolp].
have : Rbar_le (s + e / 2) s.
apply: (proj2 s_glbA) => r [rge0 Vsolpr_ns]; apply: Rnot_lt_le => rlt_sphe.
have sler : Rbar_le s r by apply: (proj1 s_glbA).
have /se_Vsolp /Rabs_def2 [Vsolpr_s _] : ball s e r.
apply: Rabs_def1; last first.
have /Rminus_le_0 := sler; apply: Rlt_le_trans.
exact/Ropp_lt_gt_0_contravar/Rlt_gt.
have : e / 2 <= e.
apply/Rle_div_l; first exact/Rlt_gt/Rlt_0_2.
rewrite -[X in X <= _]Rmult_1_r.
by apply: Rmult_le_compat_l; [apply/Rlt_le|apply/Rlt_le/Rlt_n_Sn].
by apply/Rlt_le_trans/Rlt_minus_l; rewrite Rplus_comm.
by apply: Rlt_not_le Vsolpr_ns; apply: Rplus_lt_reg_r Vsolpr_s.
apply/Rlt_not_le.
rewrite Rplus_comm; apply/Rlt_minus_l; rewrite Rminus_eq_0.
by apply/Rdiv_lt_0_compat; [|apply: Rlt_0_2].
have sgt0 : 0 < s.
have /Rle_lt_or_eq_dec := sge0; case=> // seq0; exfalso.
apply: Rlt_not_le Vsolps_geB; rewrite -seq0 sol0.
exact: Rle_lt_trans (proj2 Kp) k0_valid.
have Vsol_derive : forall t, Rmin 0 s < t < Rmax 0 s ->
deriv (V \o (sol p)) t (- kd * ((sol p t)[1] ^ 2)).
move=> t; rewrite Rmin_left => //; rewrite Rmax_right => // - [tgt0 tlts].
apply: is_deriv_Vsol => //; first exact: Rlt_le.
apply: Rnot_le_lt => Vsolpt_ns; suff /Rlt_not_le : Rbar_le s t by apply.
by apply: (proj1 s_glbA); split => //; apply: Rlt_le.
have : forall t, Rmin 0 s <= t <= Rmax 0 s -> continuity_pt (V \o (sol p)) t.
move=> t; rewrite Rmin_left => //; rewrite Rmax_right => // - [tge0 tles].
exact/continuity_pt_filterlim/ex_derive_continuous/Vsolp_deriv.
move=> /(MVT_gen _ _ _ _ Vsol_derive) [t []].
rewrite Rmin_left => //; rewrite Rmax_right => // - [tge0 tles].
rewrite /funcomp sol0 Rminus_0_r; move/(Rmult_eq_compat_r (/ s)).
rewrite Rinv_r_simpl_l=> [VsolpsVpds|]; last exact/not_eq_sym/Rlt_not_eq.
have : (V (sol p s) - V p) / s <= 0.
rewrite /Rdiv VsolpsVpds -Ropp_mult_distr_l.
apply/Rge_le/Ropp_0_le_ge_contravar; apply: Rmult_le_pos (pow2_ge_0 _).
exact/Rlt_le.
apply/Rlt_not_le/Rdiv_lt_0_compat => //.
apply: Rlt_Rminus; apply: Rlt_le_trans Vsolps_geB.
exact: Rle_lt_trans (proj2 Kp) k0_valid.
Qed.
Lemma deriv_Vsol p t :
K p -> 0 <= t -> deriv (V \o (sol p)) t (- kd * ((sol p t)[1] ^ 2)).
Proof.
move=> Kp tge0; have [circpt Vpts] := defset_invar Kp tge0.
exact: is_deriv_Vsol.
Qed.
Lemma Kinvar : is_invariant sol K.
Proof.
move=> p Kp t tge0; have [_ Vp_s] := Kp; split; first exact: circ_invar.
apply: Rle_trans Vp_s; rewrite -[X in _ <= V X]sol0.
have Vderiv : forall s, 0 <= s <= t ->
deriv (V \o (sol p)) s (- kd * ((sol p s)[1] ^ 2)).
by move=> s [sge0 slet]; apply: deriv_Vsol.
apply: (@nincr_function_le (V \o (sol p)) (Finite 0) (Finite t)) => //;
try exact: Rle_refl.
by move=> s sge0 slet; have /Vderiv := conj sge0 slet; apply: ex_deriv.
move=> s sge0 slet; have /Vderiv /is_derive_unique -> := conj sge0 slet.
apply: Rmult_le_0_r; last exact: pow2_ge_0.
by rewrite -Ropp_0; apply/Ropp_le_contravar/Rlt_le.
Qed.
Definition homoclinic_orbit : set (vect_UniformSpace R_UniformSpace 5) :=
[set p : U | p[0] = 0 /\ p[1] = 0 /\
(1 / 2) * m * (l ^ 2) * (p[4] ^ 2) = m * g * l * (1 - p[2])].
Lemma homoclinicE :
homoclinic_orbit = [set p : U | p[0] = 0 /\ p[1] = 0 /\ E p = 0].
Proof.
apply/funext => p; apply/propext; split.
move=> [p0eq0 [p1eq0 /Rminus_diag_eq homoeq]]; split=> //; split=> //.
by rewrite -homoeq /E p1eq0; field.
move=> [p0eq0 [p1eq0 Epeq0]]; split=> //; split=> //.
by apply: Rminus_diag_uniq; rewrite -Epeq0 /E p1eq0; field.
Qed.
Lemma limSKinvar : is_invariant sol (limS sol K).
Proof.
move=> p limSKp t tge0.
exact: (@invariant_limS _ _ _ Kco _ sol0 solP sol_cont Kinvar).
Qed.
Lemma subset_limSK_K : limS sol K `<=` K.
Proof.
move=> p [q Kq solq_top].
apply: compact_closed (@vect_hausdorff _ 5 Rhausdorff) Kco _ _.
suff solqK : (sol q @ +oo) K.
by move=> A /solq_top - /(_ _ solqK) [r []]; exists r.
by exists 0 => ? /Rlt_le; apply: Kinvar.
Qed.
Lemma Vsol'_eq0 p t :
limS sol K p -> 0 <= t -> Derive (V \o (sol p)) t = 0.
Proof.
move=> limSKp tge0; have limSKsolp : limS sol K (sol p t) by apply: limSKinvar.
have <- : Derive (V \o (sol (sol p t))) 0 = Derive (V \o (sol p)) t.
rewrite -[t in RHS]Rplus_0_r.
apply: derive_ext_ge0_shift; [apply: Rle_refl|apply: tge0|].
move=> ??; rewrite /funcomp -(solD sol0 solP Kinvar) //.
by rewrite Rplus_comm.
exact: subset_limSK_K.
apply: (@stable_limS _ _ _ Kco _ sol0 solP sol_cont Kinvar V).
- by apply/continuous_on_forall => ??; apply: V_continuous.
- by move=> q s Kq sge0; have := deriv_Vsol Kq sge0; apply: ex_deriv.
- move=> q Kq; have /is_derive_unique -> := deriv_Vsol Kq (Rle_refl _).
apply: Rmult_le_0_r; last exact: pow2_ge_0.
by rewrite -Ropp_0; apply/Ropp_le_contravar/Rlt_le.
- exact: limSKinvar.
Qed.
Lemma sol1_eq0 p t : limS sol K p -> 0 <= t -> (sol p t)[1] = 0.
Proof.
move=> limSKp tge0; suff : - kd * ((sol p t)[1] ^ 2) = 0.
move=> /Rmult_integral; apply: or_ind.
move/Ropp_eq_0_compat; rewrite Ropp_involutive => kd0; exfalso.
exact: (Rgt_not_eq kd 0).
by rewrite /= Rmult_1_r => /Rmult_integral; apply: or_ind.
have /subset_limSK_K Kp := limSKp.
rewrite -[LHS](is_derive_unique (V \o sol p) t); last exact: deriv_Vsol tge0.
by rewrite -[RHS](Vsol'_eq0 limSKp tge0).
Qed.
Lemma sol1'_eq0 p t : limS sol K p -> 0 <= t -> (Fpendulum (sol p t))[1] = 0.
Proof.
move=> limSKp tge0; have /subset_limSK_K Kp := limSKp.
have [_ /(_ _ tge0)] := sol_is_sol sol0 solP Kp.
move=> /(deriv_component 1%:R) /is_derive_unique <-.
by rewrite (derive_ext_ge0 tge0 (fun s sge0 => @sol1_eq0 _ _ limSKp sge0))
Derive_const.
Qed.
Lemma sol0_const p t : limS sol K p -> 0 <= t -> (sol p t)[0] = p[0].
Proof.
move=> limSKp tge0; rewrite -[p in RHS]sol0.
apply/Logic.eq_sym; case: (Rle_lt_or_eq_dec _ _ tge0) => [|->] //.
apply: (eq_is_derive (fun s => (sol p s)[0])) => s [sge0 _].
rewrite -[zero](sol1_eq0 limSKp sge0).
have /subset_limSK_K Kp := limSKp.
have [_ /(_ _ sge0) /(deriv_component (0%:R))] := sol_is_sol sol0 solP Kp.
by rewrite !mxE.
Qed.
Lemma Esol_const p t : limS sol K p -> 0 <= t -> (E \o sol p) t = E p.
Proof.
move=> limSKp tge0; rewrite -[p in RHS]sol0.
apply/Logic.eq_sym; case: (Rle_lt_or_eq_dec _ _ tge0) => [|->] //.
apply: (eq_is_derive (E \o sol p)) => s [sge0 _].
have -> : zero = (sol p s)[1] * (fctrl (sol p s)).
by rewrite sol1_eq0 ?Rmult_0_l.
by apply: deriv_Esol sge0; apply: subset_limSK_K.
Qed.
Lemma Efctrl_psol0_eq0 p t : limS sol K p -> 0 <= t ->
ke * (E (sol p t)) * (fctrl (sol p t)) + kx * (sol p t)[0] = 0.
Proof.
move=> limSKp tge0.
have -> : 0 = - (kd * (sol p t)[1] + kv * (Fpendulum (sol p t))[1]).
by rewrite sol1_eq0 ?sol1'_eq0 ?Rmult_0_r ?Rplus_0_r ?Ropp_0.
rewrite /Fpendulum !mxE /= /fctrl; field.
split; last by rewrite -{2}[(sol p t)[3]]Rmult_1_r;
apply/not_eq_sym/Rlt_not_eq/Mp_ms_gt0.
have [circsolt Vsolts] : K (sol p t).
by apply: Kinvar tge0; apply: subset_limSK_K.
by apply: fctrl_wdef circsolt _; apply: Rle_lt_trans k0_valid.
Qed.
Lemma Rinv_elim x y z : y <> 0 -> x / y = z <-> z * y = x.
Proof. by move=> yne0; split=> <-; field. Qed.
Lemma div_fctrl_mP p t : limS sol K p -> 0 <= t ->
(sol p t)[3] * (g * (sol p t)[2] - l * ((sol p t)[4] ^ 2)) =
(fctrl (sol p t)) / m.
Proof.
move=> limSKp tge0; apply/Logic.eq_sym/Rinv_elim; first exact: Rgt_not_eq.
have := sol1'_eq0 limSKp tge0; rewrite !mxE /=.
have Mp_ms_n0 : (M + m * ((sol p t)[3] ^ 2)) <> 0 by apply/Rgt_not_eq/Mp_ms_gt0.
move=> /Rinv_elim - /(_ Mp_ms_n0); rewrite Rmult_0_l.
by move=> /(@Logic.eq_sym _ 0) /Rplus_opp_r_uniq ->; ring.
Qed.
Lemma Fpendulum4E p t : limS sol K p -> 0 <= t ->
(Fpendulum (sol p t))[4] = (g / l) * (sol p t)[3].
Proof.
move=> limSKp tge0; rewrite !mxE /=.
have divfm_val := div_fctrl_mP limSKp tge0.
have /Rinv_elim := Logic.eq_sym divfm_val.
move<-; last exact/Rgt_not_eq.
field_simplify_eq.
suff -> : (sol p t)[2] ^ 2 = 1 - ((sol p t)[3] ^ 2) by ring.
suff [<- _] : K (sol p t) by ring.
exact/subset_limSK_K/limSKinvar.
do 2 ?[split; first exact: Rgt_not_eq].
by rewrite -[X in _ [3] * X]Rmult_1_r; apply/Rgt_not_eq/Mp_ms_gt0.
Qed.
Lemma En0_fctrlsol_const p t :
limS sol K p -> E p <> 0 -> 0 <= t -> fctrl (sol p t) = fctrl p.
Proof.
move=> limSKp Epn0 tge0.
have := Efctrl_psol0_eq0 limSKp tge0.
rewrite -(Efctrl_psol0_eq0 limSKp (Rle_refl _)) sol0
[E (sol p t)](Esol_const limSKp tge0) (sol0_const limSKp tge0).
move=> /Rplus_eq_reg_r /Rmult_eq_reg_l; apply.
by apply: Rmult_integral_contrapositive_currified Epn0; apply/Rgt_not_eq.
Qed.
Lemma is_derive_nneg_unique (f : R -> R) t l1 l2 :
0 <= t -> filterdiff f (within (Rle 0) (locally t)) (scal^~ l1) ->
filterdiff f (within (Rle 0) (locally t)) (scal^~ l2) -> l1 = l2.
Proof.
move=> tge0 [_ f'tl1] [_ f'tl2].
have tt : is_filter_lim (within (Rle 0) (locally t)) t.
by move=> A [e te_A]; exists e => ? /te_A.
have /f'tl1 {f'tl1} f'tl1 := tt; have /f'tl2 {f'tl2} f'tl2 := tt.
apply: Req_le_aux => e.
have [e1 te1f'] := f'tl1 (mkposreal _ (is_pos_div_2 e)).
have [e2 te2f'] := f'tl2 (mkposreal _ (is_pos_div_2 e)).
set s := t + (Rmin e1 e2) / 2.
have hmine12_ge0 : 0 <= (Rmin e1 e2) / 2.
apply/Rle_div_r; first exact: Rlt_0_2.
by rewrite Rmult_0_l; apply/Rlt_le/Rmin_pos.
have sge0 : 0 <= s by apply: Rplus_le_le_0_compat tge0 _.
have smt_val : s - t = (Rmin e1 e2) / 2 by rewrite /s; ring.
have : ball t e1 s.
apply: Rabs_def1; rewrite [minus _ _]smt_val.
apply/Rlt_div_l; first exact: Rlt_0_2.
by apply: Rle_lt_trans (Rmin_l _ _) _; have := cond_pos e1; lra.
by apply: Rlt_le_trans hmine12_ge0; have := cond_pos e1; lra.
move=> /te1f' /(_ sge0) /= hl1.
have : ball t e2 s.
apply: Rabs_def1; rewrite [minus _ _]smt_val.
apply/Rlt_div_l; first exact: Rlt_0_2.
by apply: Rle_lt_trans (Rmin_r _ _) _; have := cond_pos e2; lra.
by apply: Rlt_le_trans hmine12_ge0; have := cond_pos e2; lra.
move=> /te2f' /(_ sge0) /= hl2.
have -> : l1 - l2 =
((((f s) - (f t)) / (s - t)) - l2) - ((((f s) - (f t)) / (s - t)) - l1).
by ring.
have smt_gt0 : 0 < norm (s - t).
rewrite smt_val; apply: Rabs_pos_lt.
apply/Rgt_not_eq/Rlt_div_r; first exact: Rlt_0_2.
by rewrite Rmult_0_l; apply: Rmin_pos.
apply: Rle_trans (Rabs_triang _ _) _.
rewrite [_ e]double_var; apply: Rplus_le_compat.
move: hl2 => /(Rle_div_l _ _ _ smt_gt0).
rewrite -Rabs_div; last first.
by apply/Rgt_not_eq; move: smt_gt0; rewrite [norm _]Rabs_pos_eq // smt_val.
rewrite [(minus _ _) / _]RIneq.Rdiv_minus_distr
[(scal _ _) / _]Rinv_r_simpl_m => //.
by apply/Rgt_not_eq; move: smt_gt0; rewrite [norm _]Rabs_pos_eq // smt_val.
move: hl1 => /(Rle_div_l _ _ _ smt_gt0).
rewrite Rabs_Ropp -Rabs_div; last first.
by apply/Rgt_not_eq; move: smt_gt0; rewrite [norm _]Rabs_pos_eq // smt_val.
rewrite [(minus _ _) / _]RIneq.Rdiv_minus_distr
[(scal _ _) / _]Rinv_r_simpl_m => //.
by apply/Rgt_not_eq; move: smt_gt0; rewrite [norm _]Rabs_pos_eq // smt_val.
Qed.
Lemma derive_nneg_eq (f g : R -> R) t l1 l2 :
(forall t, 0 <= t -> f t = g t) -> 0 <= t ->
is_derive f t l1 -> is_derive g t l2 -> l1 = l2.
Proof.
move=> feqg tge0 f'l1 g'l2.
have withinRploct_proper : ProperFilter (within (Rle 0) (locally t)).
by apply: within_locally_proper => ? /locally_singleton; exists t.
have limt : is_filter_lim (within (Rle 0) (locally t)) t.
by move=> A [e se_A]; exists e => ? /se_A.
apply: (@is_derive_nneg_unique f t _ _ tge0).
exact: filterdiff_locally f'l1.
apply: (filterdiff_ext_loc g).
- by exists (mkposreal _ Rlt_0_1) => ???; rewrite feqg.
- move=> s seqt; rewrite feqg //; suff -> : s = t by [].
have withinRploct_proper' : ProperFilter' (within (Rle 0) (locally t)).
exact: Proper_StrongProper.
exact: is_filter_lim_unique seqt _.
- exact: filterdiff_locally g'l2.
Qed.
Lemma cont_is_lim (f : R -> R) x : continuous f x <-> is_lim f x (f x).
Proof.
apply: iff_trans (continuity_pt_filterlim' _ _); apply: iff_sym.
exact: iff_trans (continuity_pt_filterlim _ _) _.
Qed.
Lemma bigRmin_inseq (s : seq R) x :
List.In x s -> List.In (\big[Rmin/x]_(y <- s) y) s.
Proof.
elim: s => // y s ihs; apply: or_ind; last first.
move=> /ihs smin; rewrite big_cons.
by apply: (Rmin_case _ _ (List.In (A:=R)^~ _)); [left|right].
move=> {ihs y} ->; rewrite big_cons.
elim: s => [|y s ihs].
by rewrite big_nil Rmin_left; [left|apply: Rle_refl].
rewrite big_cons Rmin_assoc [X in Rmin X _]Rmin_comm -Rmin_assoc.
apply: (Rmin_case _ _ (List.In (A:=R)^~ _)); first by right; left.
by apply: or_ind ihs => [<-|ihs]; [left|right;right].
Qed.
Lemma bigRmin_extract (s : seq R) x y :
List.In y s -> \big[Rmin/x]_(z <- s) z = Rmin y (\big[Rmin/x]_(z <- s) z).
Proof.
elim: s => // z s ihs; rewrite !big_cons; apply: or_ind => [<-|sy].
by rewrite Rmin_assoc (Rmin_left _ _ (Rle_refl _)).
by rewrite Rmin_assoc [Rmin y z]Rmin_comm -Rmin_assoc -ihs.
Qed.
Lemma glb_finset (A : set R) x l :
finite_set A -> A x -> is_glb_Rbar A l -> A l.
Proof.
move=> [s Aes] /Aes sx glbl; apply/Aes.
suff [? [? ->]] : exists y, List.In y s /\ l = y by [].
apply: NNPP => /not_ex_all_not nsl.
have smin : List.In (\big[Rmin/x]_(y <- s) y) s by apply/bigRmin_inseq.
have llemin : Rbar_le l (\big[Rmin/x]_(y <- s) y) by apply/(proj1 glbl)/Aes.
apply: (nsl (\big[Rmin/x]_(y <- s) y)); split => //.
apply: Rbar_le_antisym llemin _.
apply: (proj2 glbl) => y /Aes sy; rewrite (bigRmin_extract _ sy).
exact: Rmin_l.
Qed.
Lemma cont_finimage_const (f : R -> R) n (g : 'I_n -> R) :
(forall t, 0 <= t -> continuous f t) ->
(forall t, 0 <= t -> exists i, f t = g i) ->
forall t, 0 <= t -> f t = f 0.
Proof.
case: n g => [g ? finim_f t tge0|]; first by have /finim_f [] := tge0; case.
case=> [|n] g fcont finim_f t tge0.
have /finim_f [i ->] := tge0; have /finim_f [j ->] := Rle_refl 0.
by rewrite !ord1.
case: (Req_dec (f t) (f 0)) => // ft_ne_f0; exfalso.
case/Rle_lt_or_eq_dec: tge0 => [tgt0|t0]; last by apply: ft_ne_f0; rewrite t0.
case/Rdichotomy: ft_ne_f0 => [ft_lt_f0|/Rgt_lt f0_lt_ft].
have gtft_img_f0 : ((Rlt (f t)) `&` (g @` setT)) (f 0).
by split=> //; have /finim_f [i] := Rle_refl 0; exists i.
have /lb_finglb : (Rlt (f t)) `&` (g @` setT) !=set0 by exists (f 0).
case=> [|l glbl]; first by exists (f t) => ? [].
set y := ((f t) + l) / 2.
have [ftltl _] : ((Rlt (f t)) `&` (g @` setT)) l.
apply: glb_finset gtft_img_f0 glbl.
apply: sub_finite_set (@subsetIr _ _ _) _.
exists (List.map g (index_enum (ordinal_finType n.+2))) => x.
split=> [[i _ <-]|].
apply/List.in_map_iff; exists i; split=> //.
exact/Iter.In_mem/mem_index_enum.
elim: (index_enum (ordinal_finType n.+2))=> // i s ihs.
by apply: or_ind; [move<-; exists i|move=> /ihs].
case: (IVT_Rbar_decr f 0 t (f 0) (f t) y).
- exact/cont_is_lim/fcont/Rle_refl.
- exact/cont_is_lim/fcont/Rlt_le.
- by move=> x /Rlt_le xge0 _; apply/continuity_pt_filterlim/fcont.
- by [].
- split=> //; rewrite /y /=; first by lra.
suff : l <= f 0 by lra.
apply: (proj1 glbl); split=> //; have /finim_f [i ?] := Rle_refl 0.
by exists i.
- move=> x [/Rlt_le xge0 [xltt fxey]].
have /finim_f [i] := xge0; rewrite fxey => yegi.
have : Rbar_le l y.
by apply: (proj1 glbl); split; [rewrite /y; lra|exists i].
by apply: Rlt_not_le; rewrite /y; lra.
have gtf0_img_ft : ((Rlt (f 0)) `&` (g @` setT)) (f t).
by split=> //; have /Rlt_le /finim_f [i] := tgt0; exists i.
have /lb_finglb : (Rlt (f 0)) `&` (g @` setT) !=set0 by exists (f t).
case=> [|l glbl]; first by exists (f 0) => ? [].
set y := ((f 0) + l) / 2.
have [f0ltl _] : ((Rlt (f 0)) `&` (g @` setT)) l.
apply: glb_finset gtf0_img_ft glbl.
apply: sub_finite_set (@subsetIr _ _ _) _.
exists (List.map g (index_enum (ordinal_finType n.+2))) => x.
split=> [[i _ <-]|].
apply/List.in_map_iff; exists i; split=> //.
exact/Iter.In_mem/mem_index_enum.
elim: (index_enum (ordinal_finType n.+2))=> // i s ihs.
by apply: or_ind; [move<-; exists i|move=> /ihs].
case: (IVT_Rbar_incr f 0 t (f 0) (f t) y).
- exact/cont_is_lim/fcont/Rle_refl.
- exact/cont_is_lim/fcont/Rlt_le.
- by move=> x /Rlt_le xge0 _; apply/continuity_pt_filterlim/fcont.
- by [].
- split=> //; rewrite /y /=; first by lra.
suff : l <= f t by lra.
apply: (proj1 glbl); split=> //; have /Rlt_le /finim_f [i ?] := tgt0.
by exists i.
- move=> x [/Rlt_le xge0 [xltt fxey]].
have /finim_f [i] := xge0; rewrite fxey => yegi.
have : Rbar_le l y.
by apply: (proj1 glbl); split; [rewrite /y; lra|exists i].
by apply: Rlt_not_le; rewrite /y; lra.
Qed.
Lemma poly2_factor a b c x :
a <> 0 -> a * (x ^ 2) + b * x + c = 0 ->
x = (- b + sqrt ((b ^ 2) - 4 * a * c)) / (2 * a) \/
x = (- b - sqrt ((b ^ 2) - 4 * a * c)) / (2 * a).
Proof.
move=> ane0 xroot.
set dlt := (b ^ 2) - 4 * a * c.
set x1 := (- b + sqrt dlt) / (2 * a).
set x2 := (- b - sqrt dlt) / (2 * a).
suff poly_fact : a * (x ^ 2) + b * x + c = a * (x - x1) * (x - x2).
move: xroot; rewrite poly_fact.
case/Rmult_integral; last by move/Rminus_diag_uniq; right.
by case/Rmult_integral=> //; move/Rminus_diag_uniq; left.
rewrite /x1 /x2; case: (Rle_or_lt 0 dlt) => [dltge0|dltlt0].
field_simplify_eq => //=; rewrite [in sqrt _ * _]Rmult_1_r sqrt_sqrt // /dlt.
by ring.
exfalso; move: xroot.
have -> : a * (x ^ 2) + b * x + c =
a * ((x + b / (2 * a)) ^ 2) + (c - (b ^ 2) / (4 * a)).
by field.
have := ane0; case/Rdichotomy => [alt0|/Rgt_lt agt0]; last first.
apply: tech_Rplus; first by apply: Rmult_le_pos (pow2_ge_0 _); apply: Rlt_le.
by apply/Rlt_Rminus/Rlt_div_l; [|move: dltlt0; rewrite /dlt]; lra.
move/Ropp_eq_0_compat; rewrite Ropp_plus_distr; apply: tech_Rplus.
apply/Ropp_0_ge_le_contravar/Rle_ge/Rmult_le_0_r; first exact: Rlt_le.
exact: pow2_ge_0.
rewrite Ropp_plus_distr.
have -> : - ((b ^ 2) / (4 * a)) = (b ^ 2) / (- 4 * a) by field.
by apply/Rlt_Rminus/Rlt_div_l; [|move: dltlt0; rewrite /dlt]; lra.
Qed.
Lemma En0_sol2_const p :
limS sol K p -> E p <> 0 -> forall t, 0 <= t -> (sol p t)[2] = p[2].
Proof.
move=> limSKp Epn0 t tge0.
have Kp : K p by apply: subset_limSK_K.
set C1 := - (2 * g + ((2 * (E p))/ (m * l))); set C2 := (fctrl p) / m.
have sol32_val : forall s, 0 <= s ->
(sol p s)[3] * (3 * g * (sol p s)[2] + C1) = C2.
move=> s sge0.
rewrite /C1 /C2 -(Esol_const limSKp sge0) /E /= (sol1_eq0 limSKp sge0)
-(En0_fctrlsol_const limSKp Epn0 sge0) -(div_fctrl_mP limSKp sge0).
by field; split; apply: Rgt_not_eq.
have sol423_val s : 0 <= s ->
(sol p s)[4] * (3 * g * (((sol p s)[2] ^ 2) - ((sol p s)[3] ^ 2)) +
C1 * (sol p s)[2]) = 0.
move=> sge0; apply: (derive_nneg_eq sol32_val sge0); last first.
exact: is_derive_const.
have [_/(_ _ sge0) sol_ats] := sol_is_sol sol0 solP Kp; apply: deriv_eq.
by rewrite !mxE /zero /minus /plus /opp /=; ring.
have sol432_val' s : 0 <= s ->
(sol p s)[3] * ((g / l) * (3 * g * (((sol p s)[2] ^ 2) -
((sol p s)[3] ^ 2)) + C1 * (sol p s)[2]) -
((sol p s)[4] ^ 2) * (12 * g * (sol p s)[2] + C1)) = 0.
move=> sge0; apply: (derive_nneg_eq sol423_val sge0); last first.
exact: is_derive_const.
have [_/(_ _ sge0) sol_ats] := sol_is_sol sol0 solP Kp; apply: deriv_eq.
rewrite Fpendulum4E // !mxE /zero /minus /plus /opp /=; field.
exact: Rgt_not_eq.
set x1 := (- C1 + sqrt ((C1 ^ 2) - 4 * (6 * g) * (- 3 * g))) / (2 * (6 * g)).
set x2 := (- C1 - sqrt ((C1 ^ 2) - 4 * (6 * g) * (- 3 * g))) / (2 * (6 * g)).
set f := fun i : 'I_4 => if i == ord0 then - 1 else
if i == 1%:R then 1 else
if i == 2%:R then x1 else x2.
rewrite -[p in RHS]sol0.
apply: (@cont_finimage_const (fun s => (sol p s)[2]) _ f) tge0.
move=> s sge0; apply: ex_derive_continuous.
by have [_ /(_ _ sge0) sol_ats] := sol_is_sol sol0 solP Kp; apply: ex_deriv.
move=> s sge0.
have circsol : ((sol p s)[2] ^ 2) + ((sol p s)[3] ^ 2) = 1.
suff [] : K (sol p s) by [].
exact/subset_limSK_K/limSKinvar.
have solroot_imf :
3 * g * (((sol p s)[2] ^ 2) - ((sol p s)[3] ^ 2)) + C1 * (sol p s)[2] = 0 ->
exists i, (sol p s)[2] = f i.
have -> : (sol p s)[3] ^ 2 = 1 - ((sol p s)[2] ^ 2) by rewrite -circsol; ring.
move=> sol2_val.
have sol2_root :
6 * g * ((sol p s)[2] ^ 2) + C1 * (sol p s)[2] + (- 3 * g) = 0.
by rewrite -sol2_val; ring.
case/poly2_factor: sol2_root => {sol2_val} [|sol2_val|sol2_val].
- by apply: Rmult_integral_contrapositive_currified; [|have := cond_pos g];
lra.
- by exists (2%:R); rewrite sol2_val.
- by exists (3%:R); rewrite sol2_val.
case: (Req_dec ((sol p s)[4]) 0) => [sol4e0|sol4ne0]; last first.
by have /sol423_val /Rmult_integral := sge0; apply: or_ind.
have /sol432_val' := sge0.
rewrite sol4e0 [0 ^ 2]Rmult_0_l Rmult_0_l Rminus_0_r.
case: (Req_dec ((sol p s)[3]) 0) => [sol3e0|sol3ne0].
move=> _; move: circsol; rewrite sol3e0 [0 ^ 2]Rmult_0_l Rplus_0_r.
rewrite -Rsqr_pow2 -Rsqr_1 => /Rsqr_eq.
by apply: or_ind => ->; [exists (1%:R)|exists ord0].
move/Rmult_integral; apply: or_ind => // /Rmult_integral; apply: or_ind => //.
move=> /Rmult_integral gdivl0; exfalso; move: gdivl0; apply: or_ind.
exact: Rgt_not_eq.
exact/Rinv_neq_0_compat/Rgt_not_eq.
Qed.
Lemma En0_sol3_const p :
limS sol K p -> E p <> 0 -> forall t, 0 <= t -> (sol p t)[3] = p[3].
Proof.
move=> limSKp Epn0 t tge0.
have circsol s : 0 <= s -> (p[2] ^ 2) + ((sol p s)[3] ^ 2) = 1.
move=> sge0; rewrite -(En0_sol2_const limSKp Epn0 sge0).
suff [] : K (sol p s) by [].
exact/subset_limSK_K/limSKinvar.
set g := fun i : 'I_2 => if i == ord0 then sqrt (1 - (p[2] ^ 2))
else - (sqrt (1 - (p[2] ^ 2))).
rewrite -[p in RHS]sol0.
apply: (@cont_finimage_const (fun t => (sol p t)[3]) _ g) tge0.
move=> s sge0; apply: ex_derive_continuous.
have Kp : K p by apply: subset_limSK_K.
by have [_ /(_ _ sge0) sol_ats] := sol_is_sol sol0 solP Kp; apply: ex_deriv.
move=> s sge0.
have /Rsqr_eq : Rsqr ((sol p s)[3]) = Rsqr (sqrt (1 - (p[2] ^ 2))).
have /circsol <- := sge0.
ring_simplify (p[2] ^ 2 + (sol p s)[3] ^ 2 - p[2] ^ 2).
by rewrite Rsqr_sqrt ?Rsqr_pow2 //; apply: pow2_ge_0.
by apply: or_ind => [sols3eg0|sols3eg1]; [exists ord0|exists 1%:R].
Qed.
Lemma En0_sol4_eq0 p :
limS sol K p -> E p <> 0 -> forall t, 0 <= t -> (sol p t)[4] = 0.
Proof.
move=> limSKp Epn0 t tge0.
have Kp : K p by apply: subset_limSK_K.
have [_ /(_ _ tge0) sol't] := sol_is_sol sol0 solP Kp.
have /Rmult_integral : (sol p t)[3] * (sol p t)[4] = 0.
rewrite -[LHS]Ropp_involutive Ropp_mult_distr_l; apply/Ropp_eq_0_compat.
apply: (derive_nneg_eq (En0_sol2_const limSKp Epn0) tge0); last first.
exact: is_derive_const.
by apply: deriv_eq; rewrite mxE.
apply: or_ind => // sol3eq0.
have /Rmult_integral : (sol p t)[2] * (sol p t)[4] = 0.
apply: (derive_nneg_eq (En0_sol3_const limSKp Epn0) tge0); last first.
exact: is_derive_const.
by apply: deriv_eq; rewrite mxE.
apply: or_ind => // sol2eq0; exfalso.
have [] : K (sol p t) by apply/Kinvar.
rewrite sol3eq0 sol2eq0 ![_ ^ 2]Rmult_0_l Rplus_0_l => eq01 _.
exact: R1_neq_R0.
Qed.
Lemma En0_sol3_eq0 p t :
limS sol K p -> E p <> 0 -> 0 <= t -> (sol p t)[3] = 0.
Proof.
move=> limSKp Epn0 tge0; rewrite En0_sol3_const => //.
apply: or_ind (Req_dec (p[3]) 0) => // p3n0; exfalso; apply: p3n0.
have : (Fpendulum (sol p 0))[4] = 0.
apply: (derive_nneg_eq (En0_sol4_eq0 limSKp Epn0) (Rle_refl 0)); last first.
exact: is_derive_const.
have Kp : K p by apply: subset_limSK_K.
have [_ /(_ _ (Rle_refl 0))] := sol_is_sol sol0 solP Kp.
exact: deriv_component.
rewrite Fpendulum4E //; last exact: Rle_refl.
rewrite sol0 => /Rmult_integral; apply: or_ind => // g0; exfalso.
apply: Rmult_integral_contrapositive g0; split; first exact: Rgt_not_eq.
exact/Rinv_neq_0_compat/Rgt_not_eq.
Qed.
Lemma En0_sol2_eq1 p t :
limS sol K p -> E p <> 0 -> 0 <= t -> (sol p t)[2] = 1.
Proof.
move=> limSKp Epn0 tge0.
have [] : K (sol p t) by apply/subset_limSK_K/limSKinvar.
rewrite En0_sol3_eq0 // [0 ^ _]Rmult_0_l Rplus_0_r -Rsqr_pow2 -{1}Rsqr_1.
case/Rsqr_eq => // sol2_eqm1 _; exfalso.
suff : Rabs (E (sol p t)) < 2 * m * g * l.
rewrite /E sol1_eq0 // En0_sol4_eq0 // [0 ^ _]Rmult_0_l !Rmult_0_r !Rplus_0_r
Rmult_0_r Rplus_0_l sol2_eqm1.
by move=> /Rabs_def2 [_]; apply: Rle_not_lt; lra.
rewrite -[X in _ < X]Rabs_pos_eq; last first.
by do 3 ?[apply: Rmult_le_pos; last exact: Rlt_le]; apply/Rlt_le/Rlt_0_2.
apply: Rsqr_lt_abs_0; rewrite !Rsqr_pow2.
have gt20 : 2 > 0 by apply/Rlt_gt/Rlt_0_2.
have : 2 * (V (sol p t)) / ke < (2 * m * g * l) ^ 2.
apply/Rlt_div_l => //; rewrite Rmult_comm; apply/Rlt_div_r => //.
have Vsolp_s : V (sol p t) < B.
have [_ Vsolp_s] : K (sol p t) by apply/subset_limSK_K/limSKinvar.
exact: Rle_lt_trans k0_valid.
apply: Rlt_le_trans Vsolp_s _.
rewrite /B Rmult_comm ![_ * _ / _]Rmult_assoc; apply/Rmult_le_compat_r.
by apply: Rdiv_le_0_compat; [apply: Rlt_le|apply: Rgt_lt].
apply: pow_incr; split; last exact: Rmin_r.
apply: Rmin_glb.
apply: Rdiv_le_0_compat; first exact: Rlt_le.
by apply: Rmult_lt_0_compat => //; apply: Rplus_lt_0_compat.
by do 3 ?[apply: Rmult_le_pos; last exact: Rlt_le]; apply: Rlt_le.
apply: Rle_lt_trans; apply/(Rle_div_r (_ ^ 2)) => //.
rewrite [X in _ <= X]Rmult_comm; apply/Rle_div_l; first exact/Rlt_gt/Rlt_0_2.
rewrite [(_ ^ 2) * _ / _]Rmult_assoc Rmult_comm /V Rplus_assoc Rplus_comm.
apply/Rle_minus_l; rewrite Rminus_eq_0.
by apply: Rplus_le_le_0_compat; apply: Rmult_le_pos; try exact: pow2_ge_0;
apply: Rdiv_le_0_compat; try exact: Rlt_0_2; apply/Rlt_le.
Qed.
Lemma subset_limSK_homoclinic_orbit : limS sol K `<=` homoclinic_orbit.
Proof.
move=> p limSKp; rewrite homoclinicE.
case: (Req_dec (E p) 0) => [Ep0|Epn0].
have := sol1_eq0 limSKp (Rle_refl _); rewrite sol0 => p10.
have := Efctrl_psol0_eq0 limSKp (Rle_refl _).
rewrite sol0 Ep0 Rmult_0_r Rmult_0_l Rplus_0_l => /Rmult_integral.
by apply: or_ind => // kx0; exfalso; apply: Rgt_not_eq kx0.
exfalso; apply Epn0; have le00 := Rle_refl 0.
by rewrite /E -[p]sol0 sol1_eq0 // En0_sol4_eq0 // En0_sol2_eq1 //; ring.
Qed.
Lemma cvg_to_homoclinic_orbit p : K p -> sol p @ +oo --> homoclinic_orbit.
Proof.
move=> Kp; apply: cvg_to_superset subset_limSK_homoclinic_orbit _.
exact: cvg_to_limS Kco Kinvar _ Kp.
Qed.
End System.