-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdata.py
101 lines (82 loc) · 3.35 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import torchvision
import torch
import numpy as np
''' Returns the MNIST dataloader '''
def mnist_dataloader(batch_size=256, train=True, cuda=False):
dataset = torchvision.datasets.MNIST('./data', download=True, train=train, transform=torchvision.transforms.ToTensor())
return torch.utils.data.DataLoader(dataset, shuffle=True, batch_size=batch_size, num_workers=2, pin_memory=cuda)
''' Returns the SVHN dataloader '''
def svhn_dataloader(batch_size=256, train=True, cuda=False):
transform = torchvision.transforms.Compose([
torchvision.transforms.Resize((28, 28)),
torchvision.transforms.Grayscale(),
torchvision.transforms.ToTensor()
])
dataset = torchvision.datasets.SVHN('./data', download=True, split=('train' if train else 'test'), transform=transform)
return torch.utils.data.DataLoader(dataset, shuffle=True, batch_size=batch_size, num_workers=2, pin_memory=cuda)
''' Samples a subset from source into memory '''
def sample_data(n=2000):
dataset = torchvision.datasets.MNIST('./data', download=True, train=True, transform=torchvision.transforms.ToTensor())
X = torch.FloatTensor(n, 1, 28, 28)
Y = torch.LongTensor(n)
inds = torch.randperm(len(dataset))[:n]
for i, index in enumerate(inds):
x, y = dataset[index]
X[i] = x
Y[i] = y
return X, Y
''' Returns a subset of the target domain such that it has n_target_samples per class '''
def create_target_samples(n=1):
transform = torchvision.transforms.Compose([
torchvision.transforms.Resize((28, 28)),
torchvision.transforms.Grayscale(),
torchvision.transforms.ToTensor()
])
dataset = torchvision.datasets.SVHN('./data', download=True, split='train', transform=transform)
X, Y = [], []
classes = 10 * [n]
i = 0
while True:
if len(X) == n*10:
break
x, y = dataset[i]
if classes[y] > 0:
X.append(x)
Y.append(y)
classes[y] -= 1
i += 1
assert(len(X) == n*10)
return torch.stack(X), torch.from_numpy(np.array(Y))
'''
Samples uniformly groups G1 and G3 from D_s x D_s and groups G2 and G4 from D_s x D_t
'''
def create_groups(X_s, y_s, X_t, y_t):
n = X_t.shape[0]
G1, G3 = [], []
# TODO optimize
# Groups G1 and G3 come from the source domain
for i, (x1, y1) in enumerate(zip(X_s, y_s)):
for j, (x2, y2) in enumerate(zip(X_s, y_s)):
if y1 == y2 and i != j and len(G1) < n:
G1.append((x1, x2))
if y1 != y2 and i != j and len(G3) < n:
G3.append((x1, x2))
G2, G4 = [], []
# Groups G2 and G4 are mixed from the source and target domains
for i, (x1, y1) in enumerate(zip(X_s, y_s)):
for j, (x2, y2) in enumerate(zip(X_t, y_t)):
if y1 == y2 and i != j and len(G2) < n:
G2.append((x1, x2))
if y1 != y2 and i != j and len(G4) < n:
G4.append((x1, x2))
groups = [G1, G2, G3, G4]
# Make sure we sampled enough samples
for g in groups:
assert(len(g) == n)
return groups
''' Sample groups G1, G2, G3, G4 '''
def sample_groups(n_target_samples=2):
X_s, y_s = sample_data()
X_t, y_t = create_target_samples(n_target_samples)
print("Sampling groups")
return create_groups(X_s, y_s, X_t, y_t), (X_s, y_s, X_t, y_t)