-
Notifications
You must be signed in to change notification settings - Fork 1
/
avltree.cpp
148 lines (136 loc) · 3.79 KB
/
avltree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
/**
* \file
* \brief A simple tree implementation using nodes
*
* \todo update code to use C++ STL library features and OO structure
* \warning This program is a poor implementation and does not utilize any of
* the C++ STL features.
*/
#include <algorithm>
#include <iostream>
#include <queue>
typedef struct node {
int data;
int height;
struct node *left;
struct node *right;
} node;
/** Create and return a new Node */
node *createNode(int data) {
node *nn = new node();
nn->data = data;
nn->height = 0;
nn->left = NULL;
nn->right = NULL;
return nn;
}
/** Returns height of tree */
int height(node *root) {
if (root == NULL)
return 0;
return 1 + std::max(height(root->left), height(root->right));
}
/** Returns difference between height of left and right subtree */
int getBalance(node *root) { return height(root->left) - height(root->right); }
/** Returns Node after Right Rotation */
node *rightRotate(node *root) {
node *t = root->left;
node *u = t->right;
t->right = root;
root->left = u;
return t;
}
/** Returns Node after Left Rotation */
node *leftRotate(node *root) {
node *t = root->right;
node *u = t->left;
t->left = root;
root->right = u;
return t;
}
/** Returns node with minimum value in the tree */
node *minValue(node *root) {
if (root->left == NULL)
return root;
return minValue(root->left);
}
/** Balanced Insertion */
node *insert(node *root, int item) {
node *nn = createNode(item);
if (root == NULL)
return nn;
if (item < root->data)
root->left = insert(root->left, item);
else
root->right = insert(root->right, item);
int b = getBalance(root);
if (b > 1) {
if (getBalance(root->left) < 0)
root->left = leftRotate(root->left); // Left-Right Case
return rightRotate(root); // Left-Left Case
} else if (b < -1) {
if (getBalance(root->right) > 0)
root->right = rightRotate(root->right); // Right-Left Case
return leftRotate(root); // Right-Right Case
}
return root;
}
/** Balanced Deletion */
node *deleteNode(node *root, int key) {
if (root == NULL)
return root;
if (key < root->data)
root->left = deleteNode(root->left, key);
else if (key > root->data)
root->right = deleteNode(root->right, key);
else {
// Node to be deleted is leaf node or have only one Child
if (!root->right) {
node *temp = root->left;
delete (root);
root = NULL;
return temp;
} else if (!root->left) {
node *temp = root->right;
delete (root);
root = NULL;
return temp;
}
// Node to be deleted have both left and right subtrees
node *temp = minValue(root->right);
root->data = temp->data;
root->right = deleteNode(root->right, temp->data);
}
// Balancing Tree after deletion
return root;
}
/** LevelOrder (Breadth First Search) */
void levelOrder(node *root) {
std::queue<node *> q;
q.push(root);
while (!q.empty()) {
root = q.front();
std::cout << root->data << " ";
q.pop();
if (root->left)
q.push(root->left);
if (root->right)
q.push(root->right);
}
}
/** Main function */
int main() {
// Testing AVL Tree
node *root = NULL;
int i;
for (i = 1; i <= 7; i++) root = insert(root, i);
std::cout << "LevelOrder: ";
levelOrder(root);
root = deleteNode(root, 1); // Deleting key with value 1
std::cout << "\nLevelOrder: ";
levelOrder(root);
root = deleteNode(root, 4); // Deletin key with value 4
std::cout << "\nLevelOrder: ";
levelOrder(root);
return 0;
}