-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeepQlearning.py
123 lines (111 loc) · 4.51 KB
/
deepQlearning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# -*- coding: utf-8 -*-
import random
import gym
import numpy as np
from collections import deque
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
from keras.losses import huber_loss
from keras import backend as K
EPISODES = 5000
class DQNAgent:
def __init__(self, state_size, action_size):
self.state_size = state_size
self.action_size = action_size
self.memory = deque(maxlen=2000)
self.gamma = 0.1 # discount rate
self.gamma_max = 0.995
self.gamma_rise = 0.002
self.epsilon = 1.2 # exploration rate
self.epsilon_min = 0.05
self.epsilon_decay = 0.998
self.learning_rate = 0.001
self.model = self._build_model()
self.target_model = self._build_model()
self.update_target_model()
"""
Huber loss for Q Learning
References: https://en.wikipedia.org/wiki/Huber_loss
https://www.tensorflow.org/api_docs/python/tf/losses/huber_loss
"""
def _build_model(self):
# Neural Net for Deep-Q learning Model
model = Sequential()
model.add(Dense(24, input_dim=self.state_size, activation='relu'))
model.add(Dense(24, activation='relu'))
model.add(Dense(24, activation='relu'))
model.add(Dense(self.action_size, activation='linear'))
model.compile(loss=huber_loss,
optimizer=Adam(lr=self.learning_rate))
return model
def update_target_model(self):
# copy weights from model to target_model
self.target_model.set_weights(self.model.get_weights())
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def act(self, state):
if np.random.rand() <= self.epsilon:
return random.randrange(self.action_size)
act_values = self.model.predict(state)
return np.argmax(act_values[0]) # returns action
def replay(self, batch_size):
minibatch = random.sample(self.memory, batch_size)
for state, action, reward, next_state, done in minibatch:
target = self.model.predict(state)
if done:
target[0][action] = reward
else:
# a = self.model.predict(next_state)[0]
t = self.target_model.predict(next_state)[0]
target[0][action] = reward + self.gamma * np.amax(t)
# target[0][action] = reward + self.gamma * t[np.argmax(a)]
self.model.fit(state, target, epochs=1, verbose=0)
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
if self.epsilon < self.epsilon_min:
self.epsilon = self.epsilon_min
if self.gamma < self.gamma_max:
self.gamma += self.gamma_rise
if self.gamma > self.gamma_max:
self.gamma = self.gamma_max
def load(self, name):
self.model.load_weights(name)
def save(self, name):
self.model.save(name)
if __name__ == "__main__":
env = gym.make('CartPole-v1')
state_size = env.observation_space.shape[0]
print(state_size)
action_size = env.action_space.n
print(action_size)
agent = DQNAgent(state_size, action_size)
# agent.load("./save/cartpole-ddqn-EP20.h5")
done = False
batch_size = 32
for e in range(EPISODES):
state = env.reset()
state = np.reshape(state, [1, state_size])
time = 0 # time is used just to count frames as a measurement of how long the ai lasted
while True:
env.render()
time += 1
action = agent.act(state)
next_state, reward, done, _ = env.step(action)
# for this problem we want the pole to balance forever
# so giving a negative reward if its finished should train the ai to play forever
if done:
reward = -10
next_state = np.reshape(next_state, [1, state_size])
agent.remember(state, action, reward, next_state, done)
state = next_state
if done:
agent.update_target_model()
print("episode: {}/{}, score: {}, e: {:.2}, g: {:.2}"
.format(e, EPISODES, time, agent.epsilon, agent.gamma))
break
if len(agent.memory) > batch_size:
agent.replay(batch_size)
#this saves every 10 episodes
if e % 10 == 0:
agent.save("./save/cartpole-ddqn-EP"+str(e)+".h5")