forked from L0SG/deepest-review-challenge
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
55 lines (43 loc) · 2.17 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import torch.nn as nn
import torch
class MultimodalRNN(nn.Module):
def __init__(self, vocab_title, vocab_authors, embed_size, hidden_size):
super(MultimodalRNN, self).__init__()
self.vocab_title = vocab_title
self.vocab_authors = vocab_authors
self.embed_size = embed_size
self.hidden_size = hidden_size
# assume a batch size is 1
self.batch_size = 1
self.embed_title = nn.Embedding(self.vocab_title, self.embed_size)
self.embed_authors = nn.Embedding(self.vocab_authors, self.embed_size)
self.lstm_title = nn.LSTMCell(self.embed_size, self.hidden_size)
self.lstm_authors = nn.LSTMCell(self.embed_size, self.hidden_size)
self.mlp = nn.Sequential(nn.Linear(self.hidden_size * 2, self.hidden_size),
nn.ReLU(),
nn.Linear(self.hidden_size, self.hidden_size),
nn.ReLU(),
nn.Linear(self.hidden_size, 2))
def forward(self, x_title, x_authors, device):
# embed x_title, get last hidden states as a summary of the title
x_title_embed = self.embed_title(x_title)
# assume batch size = 1
x_title_embed = x_title_embed.unsqueeze(0)
h = torch.zeros(self.batch_size, self.hidden_size).to(device)
c = torch.zeros(self.batch_size, self.hidden_size).to(device)
for step in range(x_title_embed.shape[1]):
h, c = self.lstm_title(x_title_embed[:, step, :], (h, c))
summary_title = h
# same goes for x_authors
x_authors_embed = self.embed_authors(x_authors)
# assume batch size = 1
x_authors_embed = x_authors_embed.unsqueeze(0)
h = torch.zeros(self.batch_size, self.hidden_size).to(device)
c = torch.zeros(self.batch_size, self.hidden_size).to(device)
for step in range(x_authors_embed.shape[1]):
h, c = self.lstm_authors(x_authors_embed[:, step, :], (h, c))
summary_authors = h
# concat the summaries and apply mlp
summary = torch.cat([summary_title, summary_authors], dim=1)
logit = self.mlp(summary)
return logit