Skip to content

Latest commit

 

History

History
189 lines (156 loc) · 5.85 KB

README.md

File metadata and controls

189 lines (156 loc) · 5.85 KB

Teaching a Multilingual Large Language Model to Understand Multilingual Speech via Multi-Instructional Training

[Paper]

Installation

  1. Install the custom version of ESPnet:
git clone --branch v.202304 --depth 1 git@github.com:espnet/espnet.git /path/to/espnet-bloomzmms
  1. Copy the modifications:
rsync -av espnet-bloomzmms-files/ /path/to/espnet-bloomzmms/
  1. Follow the ESPnet installation instructions.

Data Preparation

  1. Run the data preparation stages:
cd /path/to/espnet-bloomzmms/egs2/fleurs/asr1
./run.sh --stop-stage 5
  1. Download the synthetic multi-instractional training targets and create additional training data directories:
wget 'https://zenodo.org/records/10900287/files/tmi_training_targets.tar.gz?download=1' -O downloads/tmi_training_targets.tar.gz
mkdir downloads/tmi_training_targets
tar xf downloads/tmi_training_targets.tar.gz -C downloads/tmi_training_targets

mkdir dump/raw/train_tmi_sp dump/raw/train_mi_sp

cp -v downloads/tmi_training_targets/* dump/raw/train_tmi_sp/
cp -v dump/raw/train_t_sp/feats_type dump/raw/train_tmi_sp/
for f in wav.scp utt2spk; do
    for i in {1..3}; do
        perl -p -e 's/^(\S+)/$1-'$i'/' dump/raw/train_t_sp/$f >> dump/raw/train_tmi_sp/$f
    done
done
utils/fix_data_dir.sh dump/raw/train_tmi_sp

cp -v downloads/tmi_training_targets/* dump/raw/train_mi_sp/
cp -v dump/raw/train_t_sp/feats_type dump/raw/train_mi_sp/
for f in wav.scp utt2spk; do
    for i in {1..2}; do
        perl -p -e 's/^(\S+)/$1-'$i'/' dump/raw/train_t_sp/$f >> dump/raw/train_mi_sp/$f
    done
done
utils/fix_data_dir.sh dump/raw/train_mi_sp

Training

Note: "pretrained" models in the following commands are outputs of the previous steps, it's not necessary to download the pretrained models from the next section to perform training. If you wish to skip training, you can download the pretrained models from the next section.

  1. CTC pretraining:
./run.sh \
    --stage 6 \
    --stop-stage 11 \
    --pretrained_model downloads/bloomz_token_embeddings.pth
  1. AED training:
./run.sh \
    --stage 11 \
    --stop-stage 11 \
    --ngpu 4 \
    --asr_config conf/tuning/train_asr_e_branchformer_mms1b-asr_bloomz7b_aed.yaml \
    --train_set train_tmi \
    --auxiliary_data_tags "decoder_prefix decoder_postfix" \
    --train_text_type text_int \
    --pretrained_model exp/asr_train_asr_e_branchformer_mms1b-asr_bloomz7b_ctc_raw_hugging_face_bigscience-bloomz-7b1_sp/valid.cer_ctc.best.pth:::ctc

Pretrained models

Speech Recognition Inference

./run.sh \
    --stage 12 \
    --asr_config conf/tuning/train_asr_e_branchformer_mms1b-asr_bloomz7b_aed.yaml

Speech Translation Inference

  1. Run the data preparation steps.

For CoVoST 2, run:

./run.sh \
    --stage 3 \
    --stop-stage 3 \
    --test_sets test_covost2_en-de

For FLEURS, run:

local/prepare_fleurs_translate.py en-us de-de
  1. Generate a config with language-specific instructions:
perl -p \
    -e 's/prefix: "Repeat the sentence: "/prefix: "Translate the following text from English to German\\n"/;' \
    -e 's/postfix: ". "/postfix: "\\n"/;'  -e 's/keep_nbest_models: 3/keep_nbest_models: 1/;' \
    -e 's/max_epoch: 70/max_epoch: 0/;' \
        conf/tuning/train_asr_e_branchformer_mms1b-asr_bloomz7b_aed.yaml \
        > conf/tuning/train_asr_e_branchformer_mms1b-asr_bloomz7b_aed_translate_en-de.yaml
  1. Run the model construction and inference stages:
./run.sh \
    --stage 11 \
    --test_sets test_covost2_en-de \
    --pretrained_model exp/asr_train_asr_e_branchformer_mms1b-asr_bloomz7b_aed_raw_hugging_face_bigscience-bloomz-7b1_sp/valid.acc.ave.pth
    --asr_config conf/tuning/train_asr_e_branchformer_mms1b-asr_bloomz7b_aed_translate_en-de.yaml

SpeechGLUE Inference

  1. Prepare the SpeechGLUE data: https://github.com/ashi-ta/speechGLUE?tab=readme-ov-file#data-preparation.

  2. Run the inference script:

mkdir speechglue_output

. path.sh

for task in cola mnli_matched mnli_mismatched mrpc qnli qqp rte sst2 stsb wnli; do
    local/speechglue_inference.py \
        /path/to/speechGLUE/dump \
        ${task} \
        exp/asr_train_asr_e_branchformer_mms1b-asr_bloomz7b_aed_raw_hugging_face_bigscience-bloomz-7b1_sp \
        speechglue_output
done

SpeechXNLI Inference

  1. Download the SpeechXNLI data:
wget https://zenodo.org/records/10900287/files/speech_xnli.tar.gz?download=1 -O speech_xnli.tar.gz
tar xvf speech_xnli.tar.gz
  1. Run the inference script:
mkdir speechxnli_output

. path.sh

for lang in ar bg de el en es fr hi ru sw th tr ur vi zh; do
    local/speechxnli_inference.py \
        /path/to/speechXNLI \
        ${lang} \
        exp/asr_train_asr_e_branchformer_mms1b-asr_bloomz7b_aed_raw_hugging_face_bigscience-bloomz-7b1_sp \
        speechxnli_output
done

Citation

@inproceedings{denisov-vu-2024-teaching,
    title = "Teaching a Multilingual Large Language Model to Understand Multilingual Speech via Multi-Instructional Training",
    author = "Denisov, Pavel  and
      Vu, Thang",
    editor = "Duh, Kevin  and
      Gomez, Helena  and
      Bethard, Steven",
    booktitle = "Findings of the Association for Computational Linguistics: NAACL 2024",
    month = jun,
    year = "2024",
    address = "Mexico City, Mexico",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2024.findings-naacl.52",
    pages = "814--834",
}