This repository has been archived by the owner on Jan 21, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
61 lines (42 loc) · 1.66 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import keras
from utils.config_loader import ConfigLoader
from model.frrn import FULL_RESOLUTION_RESIDUAL_NETWORKS
from tasks import TASKS
from argparse import ArgumentParser
def parse_cli():
parser = ArgumentParser(description="FRRN")
parser.add_argument("--config", default="config.yaml", help="path to the yaml config file")
parser.add_argument("task", choices=TASKS.keys())
args = parser.parse_args()
return args
def main():
args = parse_cli()
config_loader = ConfigLoader()
if not config_loader.load(args.config):
print("Could not load config!")
exit(-1)
config = config_loader.getConfig()
# now build from config
frrn = FULL_RESOLUTION_RESIDUAL_NETWORKS[config["model"]["architecture"]](**config["model"])
frrn.model().summary()
# load pretrained weights if available
if config.has_key("weights"):
frrn.model().load_weights(config["weights"])
# now run one of the registered tasks e.g. training or prediction
task = TASKS[args.task](config[args.task])
import datetime
log_dir = "./logs/{}".format(datetime.datetime.now().strftime("%Y-%m-%d_%H:%M:%S"))
import os
if not os.path.exists(log_dir):
os.makedirs(log_dir)
elif task == 'train':
print("The log directory already exists!")
exit(-1)
from shutil import copy2
if config.has_key("weights"):
copy2(config["weights"], os.path.join(log_dir, "base_model.h5"))
# copy the yaml config to the log directory to know how to reproduce results
copy2(args.config, os.path.join(log_dir, 'config.yaml'))
task.run(frrn.model(), log_dir)
if __name__ == "__main__":
main()