-
Notifications
You must be signed in to change notification settings - Fork 0
/
CS_Baby_Biome_TCAM.py
271 lines (194 loc) · 8.63 KB
/
CS_Baby_Biome_TCAM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
#!/usr/bin/env python
# coding: utf-8
# In[2]:
import numpy as np
import nbconvert
import pandas as pd
from mprod import table2tensor
from mprod.dimensionality_reduction import TCAM
from sklearn.decomposition import PCA
import seaborn as sn
from scipy.cluster.hierarchy import dendrogram, linkage
import matplotlib.pyplot as plt
from sklearn.cluster import AgglomerativeClustering
from scipy.stats import pearsonr
from upsetplot import UpSet
#from skbio.diversity import beta_diversity#Not compatible with current python version
#from skbio.stats.distance import permanova #Not compatible with current python version
# In[3]:
def Pseudocount(d):
p = min(d[d>0]) / 2
d2 = d + p
return(d2)
def CLR_norm(x):
d = np.array(x)
d = Pseudocount(d)
d = pd.DataFrame(d.astype(float), columns=list(x.columns))
step1_1 = d.apply(np.log, axis = 0)
step1_2 = step1_1.apply(np.average, axis = 1)
step1_3 = step1_2.apply(np.exp)
step2 = d.divide(step1_3, axis = 0)
step3 = step2.apply(np.log, axis = 1)
return(step3)
def TCA(DF):
print("Create tensor")
data_tensor, map1, map3 = table2tensor(DF, missing_flag=True)
print("Run TCA")
tca = TCAM()
tca_trans = tca.fit_transform(data_tensor)
print("Generating result tables")
tca_loadings = tca.mode2_loadings # Obtain TCAM loadings
tca_var = tca.explained_variance_ratio_*100 # % explained variation per TCA factor
tca_df = pd.DataFrame(tca_trans) # Cast TCA scores to dataframe
tca_df.rename(index = dict(map(reversed, map1.items())) , inplace = True) # use the inverse of map1 to denote each row
# of the TCAM scores with it's subject ID
return(tca_trans, tca_loadings, tca_var, tca_df)
def Attach_columns(tca_df, Info, Column=["Type"] ):
Column.append("CS_BABY_BIOME_ID")
To_add = Info[Column]
To_add = To_add.drop_duplicates(keep='last')
tca_df["CS_BABY_BIOME_ID"] = list(tca_df.index)
tca_df2 =tca_df.merge(To_add, on='CS_BABY_BIOME_ID', how='left')
return(tca_df2)
def Attach_columns_NEXT(tca_df, Info, Column=["Type"] ):
Column.append("NEXT_ID")
To_add = Info[Column]
To_add = To_add.drop_duplicates(keep='last')
tca_df["NEXT_ID"] = list(tca_df.index)
tca_df5 =tca_df.merge(To_add, on='NEXT_ID', how='left')
return(tca_df5)
def Check_Loads(tca_loadings, Bugs, Top=15, Axis=0, Return=False, Plot=True):
tca_loadings = pd.DataFrame(tca_loadings, index= Bugs)
if Plot == False: return(tca_loadings)
import matplotlib.pyplot as plt
sn.kdeplot(data=tca_loadings, x=Axis)
plt.show()
plt.clf()
#Biggest contributors to axis
print(tca_loadings.sort_values(Axis).iloc[0:Top, Axis])
print("====================================")
print(tca_loadings.sort_values(Axis, ascending=False).iloc[0:Top,Axis])
if Return== True:
return(tca_loadings)
def Count_NA(x):
x = x[x.notnull()]
return(x.shape[0])
def Quantify_Availability(Info, Recoded_time, Keep = [90] ):
Info["Timepoint2"] = Recoded_time
Time_availability = Info.pivot(index='CS_BABY_BIOME_ID', columns='Timepoint_numeric', values='NG_ID')
#Count total number of non-missing data
Number_available = Time_availability.apply(Count_NA, axis=0)
print(Number_available)
#Filter according to keep
Times_keep = Time_availability[Keep]
Times_keep = Times_keep.dropna()
Time_availability[ Time_availability.notnull() ] = True
Time_availability[ Time_availability.isnull() ] = False
#UpSet Plot
Time_availability = Time_availability.reset_index()
Time_availability.set_index( sorted(set(Recoded_time) ) , inplace=True)
plt = UpSet(Time_availability, subset_size='count', show_counts=True).plot()
return(Times_keep)
def Cluster(tca_var, tca_df, N_components=2, N_clusters=2 ):
import matplotlib.pyplot as plt
print( "Total variability explained: " + str( round(tca_var[0:N_components].sum(), 2) ) + "%" )
linkage_data = linkage(tca_df.iloc[:,0:N_components] , method='ward', metric='euclidean')
dendrogram(linkage_data)
plt.show()
plt.clf()
hierarchical_cluster = AgglomerativeClustering(n_clusters=N_clusters, affinity='euclidean', linkage='ward')
labels = hierarchical_cluster.fit_predict(tca_df.iloc[:,0:N_components])
tca_df["Cluster"] = list(labels)
fig = sn.scatterplot(data=tca_df, x=0, y=1, hue="Cluster")
fig.set(xlabel= 'Axis 1 ({Perc}%)'.format(Perc=round(tca_var[0],2)), ylabel='Axis 2 ({Perc}%)'.format(Perc=round(tca_var[1],2)) )
plt.show()
plt.clf()
return(tca_df)
def Plot_abundances_vs_time(tca_df, Info, DF, Bugs_plot):
import matplotlib.pyplot as plt
To_merge = tca_df.reset_index(drop=False)
To_merge = To_merge[["index", "Cluster"]]
To_merge = To_merge.rename(columns={"index": "CS_BABY_BIOME_ID"})
Info_clusters =Info.merge(To_merge, on='CS_BABY_BIOME_ID', how='left')
Info_clusters = Info_clusters.dropna()
DF["Cluster"] = list(Info_clusters["Cluster"])
for Bug in Bugs_plot:
Bug_abundance = DF[[Bug, "Cluster"]]
Bug_abundance = Bug_abundance.reset_index(drop=False)
Bug_short = Bug.split("|s__")[-1]
fig = sn.boxplot(data=Bug_abundance, y=Bug, x="Timepoint", hue="Cluster", )
#fig.map(sn.swarmplot, Bug, 'Timepoint')
#fig.set_ylim( Bug_abundance[Bug].min() , Bug_abundance[Bug].max() )
fig.set(ylabel=Bug_short + " (Clr)")
fig.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
plt.show()
plt.clf()
def Do_permanova(Phenos, Pheno_list, tca_df,Perm=2000):
Results_permanova = {}
for Pheno in Pheno_list:
To_add = Phenos[ ["CS_BABY_BIOME_ID", Pheno] ]
To_add = To_add.dropna()
To_add = To_add.astype({"CS_BABY_BIOME_ID": str}, errors='raise')
To_add = To_add.set_index("CS_BABY_BIOME_ID", drop=True)
#Remove missing variables
Not_Missing = []
for i in list(tca_df.index):
if i in list(To_add.index): Not_Missing.append(i)
For_distance = tca_df.loc[ Not_Missing ]
Distance = beta_diversity(metric = 'sqeuclidean', counts =For_distance, ids= For_distance.index)
try:
Result = permanova(Distance, To_add, column=Pheno, permutations=Perm)
P = Result["p-value"]
Results_permanova[Pheno] = P
except:
Results_permanova[Pheno] = np.nan
return(Results_permanova)
# In[6]:
# Read data, and only keep species
Info = pd.read_csv("Desktop/CS_Baby_Biome/OLD_ANALYSIS/METADATA_INFANTS_EARLY_CS_BABY_BIOME_09_06_2023_UPDATED_FEEDING.txt", sep="\t")
print (Info.shape)
DF = pd.read_csv("Desktop/CS_Baby_Biome/submission/2024_submission/analysis/species_filtered_early_atleast_2_infants_CS_Baby_Biome_0.05_RA_01_04_2024.txt", sep="\t")
print (DF.shape)
DF['ID'] = DF.index
DF = DF[DF['ID'].isin(Info.NG_ID)]
DF.ID = DF.ID.astype("category")
DF.ID.cat.set_categories(Info.NG_ID, inplace=True)
DF = DF.sort_values(["ID"])
DF2 = DF.drop(["ID"], 1)
DF2 = CLR_norm(DF2) # CLR only on species level
#DF2 = DF2.drop("UNCLASSIFIED", 1)
print(DF2.shape)
# In[7]:
# format and make into 3D tensor
Info2 = Info[["CS_BABY_BIOME_ID", "Timepoint_numeric"]]
DF3 = pd.concat([Info2.reset_index(drop=True), DF2.reset_index(drop=True)], axis=1)
#First two columns (ID and Timepoint need to become a multi-level index)
Arrays = [ list(DF3.CS_BABY_BIOME_ID), list(DF3.Timepoint_numeric) ]
tuples = list(zip(*Arrays))
index = pd.MultiIndex.from_tuples(tuples, names=["CS_BABY_BIOME_ID", "Timepoint_numeric"])
DF3.index = index
DF3 =DF3.drop(["CS_BABY_BIOME_ID", "Timepoint_numeric"], 1)
print (DF3.shape)
# In[8]:
print(len(DF3.index))
# In[9]:
print (DF3.index)
# In[11]:
tca_trans, tca_loadings, tca_var, tca_df = TCA(DF3)
# In[12]:
tca_df2 = Attach_columns(tca_df, Info, Column=["feeding_mode_pragmatic"] )
# In[13]:
colors = ["olive", "pink", "skyblue"]
fig = sn.scatterplot(data=tca_df2, x=0, y=1, hue="feeding_mode_pragmatic", palette=colors)
fig.set(xlabel= 'Axis 1 ({Perc}%)'.format(Perc=round(tca_var[0],2)), ylabel='Axis 2 ({Perc}%)'.format(Perc=round(tca_var[1],2)) )
# In[14]:
tca_df3 = Attach_columns(tca_df, Info, Column=["Randomization_AB_all"] )
# In[15]:
import seaborn as sn
# create a scatterplot with red and yellow colors
colors = ["gold", "red"]
fig = sn.scatterplot(data=tca_df3, x=0, y=1, hue="Randomization_AB_all", palette=colors)
fig.set(xlabel= 'Axis 1 ({Perc}%)'.format(Perc=round(tca_var[0],2)), ylabel='Axis 2 ({Perc}%)'.format(Perc=round(tca_var[1],2)) )
# In[16]:
tca_df.to_csv("Desktop/CS_Baby_Biome/submission/2024_submission/analysis/TCAM_CS_BABY_BIOME_01_04_2024.txt")
# In[ ]: