-
Notifications
You must be signed in to change notification settings - Fork 9
/
tensorprodc.c
111 lines (100 loc) · 3.31 KB
/
tensorprodc.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#include "mex.h"
/*
* TENSORPRODC
*
* See the help text in tensorprodc.m for a description.
*
* Author: Gunnar Farnebäck
* Medical Informatics
* Linköping University, Sweden
* gunnar@imt.liu.se
*/
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
{
int number_of_arrays = (nrhs - 2) / 2;
double *index_sizes = mxGetPr(prhs[0]);
int number_of_indices = mxGetM(prhs[0]) * mxGetN(prhs[0]);
int output_ndims = mxGetM(prhs[1]) * mxGetN(prhs[1]);
int *output_dims;
double *output;
int k;
int *indices;
int number_index_values = 1;
int x;
int max_array_dims = output_ndims;
int *array_indices;
int output_index;
double p;
int m;
/* Create the result array.
*
* In case all indices are repeated the output is a scalar which
* should logically be considered to be zero-dimensional, but that
* doesn't go so well with Matlab's model of arrays. Instead we
* have to special case it.
*/
if (output_ndims == 0)
plhs[0] = mxCreateDoubleScalar(0.0);
else {
output_dims = mxCalloc(output_ndims, sizeof(output_dims[0]));
for (k = 0; k < output_ndims; k++) {
int n = (int) mxGetPr(prhs[1])[k] - 1;
output_dims[k] = (int) mxGetPr(prhs[0])[n];
}
plhs[0] = mxCreateNumericArray(output_ndims, output_dims,
mxDOUBLE_CLASS, mxREAL);
mxFree(output_dims);
}
output = mxGetPr(plhs[0]);
/* Allocate space to hold the index values and find out the total
* number of index combinations to loop over.
*/
indices = mxCalloc(number_of_indices, sizeof(indices[0]));
for (k = 0; k < number_of_indices; k++)
number_index_values *= index_sizes[k];
/* Find the maximum number of indices for a single array. */
for (m = 0; m < number_of_arrays; m++)
if (mxGetNumberOfDimensions(prhs[m + 2]) > max_array_dims)
max_array_dims = mxGetNumberOfDimensions(prhs[m + 2]);
/* Allocate space for the index values used by a single array.
* This is shared between all arrays.
*/
array_indices = mxCalloc(max_array_dims, sizeof(array_indices[0]));
/* Loop over all combinations of index values. */
for (x = 0; x < number_index_values; x++) {
/* Compute index values for this iteration of the loop. */
int y = x;
for (k = 0; k < number_of_indices; k++) {
indices[k] = y % (int) index_sizes[k];
y /= index_sizes[k];
}
/* Find the linear subscript into the output array. Once more
* the scalar output case must be special-cased.
*/
if (output_ndims == 0)
output_index = 0;
else {
for (k = 0; k < output_ndims; k++)
array_indices[k] = indices[(int) mxGetPr(prhs[1])[k] - 1];
output_index = mxCalcSingleSubscript(plhs[0], output_ndims,
array_indices);
}
/* Compute the product of the array values for the current set
* of indices.
*/
p = 1.0;
for (m = 0; m < number_of_arrays; m++) {
int n = mxGetM(prhs[2 + number_of_arrays + m]);
double *i = mxGetPr(prhs[2 + number_of_arrays + m]);
int index;
for (k = 0; k < n; k++)
array_indices[k] = indices[(int) i[k] - 1];
index = mxCalcSingleSubscript(prhs[2 + m], n, array_indices);
p *= mxGetPr(prhs[2 + m])[index];
}
/* Sum this product to the result. */
output[output_index] += p;
}
mxFree(indices);
mxFree(array_indices);
}