-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathdatagen.py
71 lines (64 loc) · 1.92 KB
/
datagen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import os, random, sys
import numpy as np
import cv2
from dutil import *
NUM_IMAGES = 1769
SAMPLES_PER_IMG = 10
DOTS_PER_IMG = 60
IMAGE_W = 144
IMAGE_H = 192
IMAGE_DIR = 'YB_PICTURES'
NUM_SAMPLES = NUM_IMAGES * 2 * SAMPLES_PER_IMG
def center_resize(img):
assert(IMAGE_W == IMAGE_H)
w, h = img.shape[0], img.shape[1]
if w > h:
x = (w-h)/2
img = img[x:x+h,:]
elif h > w:
img = img[:,0:w]
return cv2.resize(img, (IMAGE_W, IMAGE_H), interpolation = cv2.INTER_LINEAR)
def yb_resize(img):
assert(img.shape[1] == 151)
assert(img.shape[0] == 197)
return cv2.resize(img, (IMAGE_W, IMAGE_H), interpolation = cv2.INTER_LINEAR)
def rand_dots(img, sample_ix):
sample_ratio = float(sample_ix) / SAMPLES_PER_IMG
return auto_canny(img, sample_ratio)
x_data = np.empty((NUM_SAMPLES, NUM_CHANNELS, IMAGE_H, IMAGE_W), dtype=np.uint8)
y_data = np.empty((NUM_SAMPLES, 3, IMAGE_H, IMAGE_W), dtype=np.uint8)
ix = 0
for root, subdirs, files in os.walk(IMAGE_DIR):
for file in files:
path = root + "\\" + file
if not (path.endswith('.jpg') or path.endswith('.png')):
continue
img = cv2.imread(path)
if img is None:
assert(False)
if len(img.shape) != 3 or img.shape[2] != 3:
assert(False)
if img.shape[0] < IMAGE_H or img.shape[1] < IMAGE_W:
assert(False)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = yb_resize(img)
for i in xrange(SAMPLES_PER_IMG):
y_data[ix] = np.transpose(img, (2, 0, 1))
x_data[ix] = rand_dots(img, i)
if ix < SAMPLES_PER_IMG*16:
outimg = x_data[ix][0]
cv2.imwrite('cargb' + str(ix) + '.png', outimg)
print path
ix += 1
y_data[ix] = np.flip(y_data[ix - 1], axis=2)
x_data[ix] = np.flip(x_data[ix - 1], axis=2)
ix += 1
sys.stdout.write('\r')
progress = ix * 100 / NUM_SAMPLES
sys.stdout.write(str(progress) + "%")
sys.stdout.flush()
assert(ix <= NUM_SAMPLES)
assert(ix == NUM_SAMPLES)
print "Saving..."
np.save('x_data.npy', x_data)
np.save('y_data.npy', y_data)