Skip to content

Latest commit

 

History

History
27 lines (17 loc) · 1.81 KB

README.md

File metadata and controls

27 lines (17 loc) · 1.81 KB

torchanalyse

A pytorch model profiler with information about flops, energy, and e.t.c

How to use

Please see the files at /examples like test_linear.py and test_transformer.py for more information.

Basically, we use the profiler function in torch analyze.

How to install

simply

pip3 install torchanalyse

What will the result be like

Result of linear layer

Op Type Dimension Bound C/M ratio Op Intensity Latency (msec) Cycles C Effcy Flops (MFLOP) Input_a (MB) Input_w (MB) Output (MB) Total Data (MB) Throughput (Tflops) Roofline Throughput offchip (Tflops) Roofline Throughput onchip (Tflops) Compute Cycles Memory Cycles Sparsity Total energy (mJ)
0 aten::linear "([1, 16], [32, 16], [1, 32])" M 0.006689895470383274 0.9142857142857143 1.2444444444444445e-06 1.1697777777777778 1.0 0.001024 1.6e-05 0.000512 3.2e-05 0.00056 0.8228571428571428 0.8228571428571428 0.8228571428571428 0.00782569105691057 1.1697777777777778 0.0 154980.04707236143

For now the profile function will provide a datafram with several information for each aten operators. You could see the flops of each at the line of Flops.

I may try to refine the datafram structure in the future.