-
Notifications
You must be signed in to change notification settings - Fork 1
/
Kalman_Filter_UAV.py
122 lines (98 loc) · 4.23 KB
/
Kalman_Filter_UAV.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
from Kalman_Filter_Custom_2D import KalmanFilter
from BB_Draw import get_bb_video, get_bb_frame
import cv2
import os
from ultralytics import YOLO
# The current directory
curr_dir = os.getcwd()
print(curr_dir)
# The parent directory
parent_directory = r"D:\1 sem\AI CS6163\Assignments\Assignment 3 pt 2"
# Set input and output directory
video_path = r"Drone Videos\Drone Tracking 1.mp4"
output_video_path = os.path.join(parent_directory, 'Output', 'running_4_kf.mp4')
print(output_video_path)
# Instantiate model
weights_path = r"kaggle/working/drone_detection/train5/weights/best.pt"
model = YOLO(weights_path)
names = model.names
print(names)
# Kalman filter parameters
dt = 1/30 # Sampling time = FPS
INIT_POS_STD = 10 # Initial position standard deviation
INIT_VEL_STD = 10 # Initial velocity standard deviation
ACCEL_STD = 40 # Acceleration standard deviation
GPS_POS_STD = 1 # Measurement position standard deviation
# Kalman filter initialization
kf = KalmanFilter(dt, INIT_POS_STD, INIT_VEL_STD, ACCEL_STD, GPS_POS_STD)
# Open the video file
cap = cv2.VideoCapture(video_path)
isFirstFrame = True
# Initialize video writer
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
print("Writing to folder.")
out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))
while True:
# Read frame from the video
ret, frame = cap.read()
# Break the loop if there are no more frames to read
if not ret:
break
# Create the legend circles
true_circle_position = (20, 20)
predict_circle_position = (20, 50)
update_circle_position = (20, 80)
circle_radius = 6
true_circle_color = (0, 255, 0) # Green color for data
predict_circle_color = (255, 0, 0) # Blue color for forecast
update_circle_color = (0, 0, 255) # Red color for forecast
circle_thickness = 2 # Filled circle
# Draw the legend circles
cv2.circle(frame, true_circle_position, circle_radius, true_circle_color, circle_thickness)
cv2.circle(frame, predict_circle_position, circle_radius, predict_circle_color, circle_thickness)
cv2.circle(frame, update_circle_position, circle_radius, update_circle_color, circle_thickness)
# Draw the legend
cv2.putText(frame, "True", (40, 25), cv2.FONT_HERSHEY_SIMPLEX, .5, true_circle_color, 2)
cv2.putText(frame, "Predict", (40, 55), cv2.FONT_HERSHEY_SIMPLEX, .5, predict_circle_color, 2)
cv2.putText(frame, "Update", (40, 85), cv2.FONT_HERSHEY_SIMPLEX, .5, update_circle_color, 2)
# Process the frame to get bounding box centers
centers = get_bb_frame(frame, model, names, object_class='Drone')
print(names)
# Check if center is detected
if len(centers) > 0:
center = centers[0] # Extract the first center tuple
# Example: Draw circle at the center
if isinstance(center, tuple):
print("Center = ", center)
cv2.circle(frame, center, radius=8, color=(0, 255, 0), thickness=4) # Green
x_pred, y_pred = kf.predict()
if isFirstFrame: # First frame
x_pred = round(x_pred[0])
y_pred = round(y_pred[0])
print("Predicted: ", (x_pred, y_pred))
isFirstFrame = False
else:
x_pred = round(x_pred[0])
y_pred = round(y_pred[1])
print("Predicted: ", (x_pred, y_pred))
cv2.circle(frame, (x_pred, y_pred), radius=8, color=(255, 0, 0), thickness=4) # Blue
# Update
(x1, y1) = kf.update(center)
x_updt = round(x1[0])
y_updt = round(x1[1])
print("Update: ", (x_updt, y_updt))
cv2.circle(frame, (x_updt, y_updt), radius=8, color= (0, 0, 255), thickness=4) # Red
# Write frame to the output video
out.write(frame)
# Display the frame with circles
cv2.imshow("Frame", frame)
# Wait for the 'q' key to be pressed
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release the video capture and close windows
cap.release()
out.release()
cv2.destroyAllWindows()