-
Notifications
You must be signed in to change notification settings - Fork 423
/
UniquePath.py
75 lines (52 loc) · 1.73 KB
/
UniquePath.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
"""
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 7 x 3 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
Example 1:
Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1. Right -> Right -> Down
2. Right -> Down -> Right
3. Down -> Right -> Right
Example 2:
Input: m = 7, n = 3
Output: 28
思路:
直接DP。子问题:
经过当前点的路径一共有多少条。
由于只能向右或者向下且不可返回,每一个点的路径可由左和右的点的路径数相加得来。
边界:
无则为0。
1 1 1
1 2 3
初始化一个 x * x 的列表,并将0, 0设置为1。
之后将每个点的路径数等于左+上。
效率为O(mn)。
2
数学方法暂且跳过。
测试地址:
https://leetcode.com/problems/unique-paths/description/
beat 100%.
"""
class Solution(object):
def uniquePaths(self, m, n):
"""
:type m: int
:type n: int
:rtype: int
"""
_map = [[0 for _ in range(m)] for _ in range(n)]
# _map[0][0] = 1
for i in range(n):
for j in range(m):
x = _map[i-1][j] if i - 1 >= 0 else 0
y = _map[i][j-1] if j - 1 >= 0 else 0
if x + y == 0:
_map[i][j] = 1
else:
_map[i][j] = x + y
return _map[n-1][m-1]