forked from bingqingchen/PROF
-
Notifications
You must be signed in to change notification settings - Fork 5
/
main_inverter.py
147 lines (115 loc) · 4.98 KB
/
main_inverter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os, sys, argparse
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
from env.inverter import IEEE37
from algo.ppo import PPO
from agents.inverter_policy import Net, NeuralController
from utils.inverter_utils import Replay_Memory
import pdb
import torch
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DEVICE
parser = argparse.ArgumentParser(description='GnuRL Demo: Online Learning')
parser.add_argument('--gamma', type=float, default=0.98, metavar='G',
help='discount factor (default: 0.98)')
parser.add_argument('--seed', type=int, default=42, metavar='N',
help='random seed (default: 42)')
parser.add_argument('--lam', type=int, default=10, metavar='N',
help='random seed (default: 42)')
parser.add_argument('--lr', type=float, default=1e-3, metavar='G',
help='Learning Rate')
parser.add_argument('--epsilon', type=float, default=0.2, metavar='G', help='PPO Clip Parameter')
parser.add_argument('--update_episode', type=int, default=4, metavar='N',
help='PPO update episode (default: 1); If -1, do not update weights')
parser.add_argument('--exp_name', type=str, default='inverter',
help='save name')
parser.add_argument('--network_name', type=str, default='ieee37',
help='')
args = parser.parse_args()
def main():
torch.manual_seed(args.seed)
writer = SummaryWriter(comment = args.exp_name)
# Create Simulation Environment
if args.network_name == 'ieee37':
env = IEEE37()
else:
print("Not implemented")
n_bus = env.n - 1
n_inverters = len(env.gen_idx) # inverters at PV panels
env_params = {'V0': env.V0[-env.n_pq:],
'P0': env.P0[-env.n_pq:],
'Q0': env.Q0[-env.n_pq:],
'H': np.hstack([env.R, env.B]), # 35 x 70
'n_bus':n_bus, # Slack bus is not controllable
'gen_idx': env.gen_idx - 1, # Excluded the slack bus
'V_upper': env.v_upper, 'V_lower': env.v_lower,
'S_rating': env.max_S,
}
scaler = 1000 # Note: The value for Sbus is really small; Scale up for better learning
mbp_nn = Net(n_bus, n_inverters, [256, 128, 64], [16, 4])
memory = Replay_Memory()
mbp_policy = NeuralController(mbp_nn, memory, args.lr, lam = args.lam, scaler = scaler, **env_params)
mbp_policy = mbp_policy.to(DEVICE)
# 1-week data
num_steps = 900 # 15 minutes
n_episodes = 7*86400//num_steps
V_prev = np.zeros(n_bus)
V_record = []
V_est_record = []
P_record = []
Q_record = []
for i in range(n_episodes):
loss = 0
violation_count = 0
for k in range(num_steps):
t = i*num_steps + k
Sbus, P_av = env.getSbus(t)
Sbus *= scaler
state = np.concatenate([V_prev, np.real(Sbus), np.imag(Sbus)])
mbp_policy.memory.append((state, Sbus, P_av)) ## Everything is np.array!
state = torch.tensor(state).float().unsqueeze(0)
P, Q = mbp_policy(state, Sbus, P_av = P_av)
#pdb.set_trace()
V, success = env.step(P + 1j*Q)
V_prev = V[1:]
if np.any(V>env.v_upper) | np.any(V<env.v_lower):
violation_count += 1
writer.add_scalar("V/max", max(V[1:]), t)
writer.add_scalar("V/min", min(V[1:]), t)
cost = np.clip(P_av - P[mbp_policy.gen_idx], 0, None)
loss += cost
V_record.append(V[1:])
P_record.append(P)
Q_record.append(Q)
if (k % 900 == 0) & (t>0):
mbp_policy.update()
writer.add_scalar("Loss", loss.mean().item(), i)
writer.add_scalar("violations", violation_count, i)
## Number of Projection operation during inference time
writer.add_scalar("proj_count", mbp_policy.proj_count, i)
mbp_policy.proj_count = 0
if (i % 20 ==0) & (i>0):
np.save(f"results/V_{args.exp_name}.npy", np.array(V_record))
np.save(f"results/P_{args.exp_name}.npy", np.array(P_record))
np.save(f"results/Q_{args.exp_name}.npy", np.array(Q_record))
np.save(f"results/V_{args.exp_name}.npy", np.array(V_record))
np.save(f"results/P_{args.exp_name}.npy", np.array(P_record))
np.save(f"results/Q_{args.exp_name}.npy", np.array(Q_record))
if __name__ == '__main__':
main()
'''
# Example Usage of the environment
t = 10
Sbus = env.getSbus(t)
# Solve power flow equations
V, success = env.step(Sbus)
print(np.abs(V))
if success == 0:
print("Something is wrong")
# Estimation using the linearized model
V_est = env.linear_estimate(Sbus)
print(V_est)
'''