forked from jsemric/ahofa
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize.py
executable file
·146 lines (124 loc) · 4.7 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#!/usr/bin/env python3
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import pandas as pd
import sys
import re
import os
def err_dist(df1,df2):
df1 = df1.set_index('automaton')
df1['ce'] = df1.cfp / df1.total
df2 = df2.set_index('automaton')
df1.drop('pcap',axis=1,inplace=True)
df = pd.concat([df2, df1],axis=1, join='inner')
df = df.reset_index()
df = df.loc[(df.automaton.str.startswith('sprobe')) & \
(df.method == 'prune')]
#sns.violinplot(x='ratio',y='ce',data=df,ineer=None, color='#dadee5',cut=0)
sns.stripplot(x='ratio',y='ce',data=df,size=4,jitter=1)
plt.title('CE distribution of sprobe pruning reduction')
plt.ylabel('CE')
plt.xlabel('reduction ratio')
plt.grid()
plt.show()
def to_latex(df):
# 1.1 A vs C - 2 graphs + rabit line
#print('#1 prune ce vs ae')
#print(df.loc[(df.automaton == 'sprobe') & (df.method == 'prune'),
# ['ratio','ae','ce','ap','cp']].set_index('ratio').to_latex())
print('Large nfa')
for i in df.automaton.unique():
print(i)
#d = df.loc[(df.method != 'bfs') & (df.automaton == i)]
d = df.loc[df.automaton == i]
d = d.pivot_table(index='ratio',columns='method',values=['ap','cp','throughput','states'])
print(d.to_latex())
print(d)
def make_plot(df, nfa_name, var='ce', xmin = 0, ymax=None, drop=None,
save=None):
cols = ['method','ratio','ce','ae','cp','ap']
sprobe = df.loc[df.automaton == nfa_name, cols]
sprobe = sprobe.loc[sprobe.ratio > xmin]
fig, ax = plt.subplots()
markers = {'prune':'X','bfs':'s','merge':'o'}
colors = {'prune':'blue','bfs':'gold','merge':'firebrick'}
for k, g in sprobe.loc[sprobe['method'] != drop].groupby('method'):
ax = g.plot(ax=ax, kind='line', x='ratio', y=var, label=k, c=colors[k],
marker=markers[k], markersize=8, linestyle='--')
ax.set_title(nfa_name + ' ' + var.upper())
ax.set_ylabel(var.upper())
if ymax:
ax.set_ylim((-0.005,ymax))
ax.set_xlabel('reduction ratio')
plt.grid()
plt.legend(loc='best')
if save:
ax.get_figure().savefig('figures/{}.png'.format(
save))
else:
plt.show()
def main():
df1 = pd.read_csv('experiments/eval.csv').drop_duplicates()
df2 = pd.read_csv('experiments/reduction.csv').drop_duplicates()
df2['method'] = 'prune'
df2.loc[df2.pcap == 'None', 'method'] = 'bfs'
df2.loc[df2.th.notnull(), 'method'] = 'merge'
#err_dist(df1,df2)
df1 = df1.groupby('automaton').sum()
df2 = df2.set_index('automaton')
df = pd.concat([df1, df2], axis=1, join='inner').reset_index()
df['automaton'] = df.automaton.str.replace('\.\d.*','')
df['ce'] = df.cfp / df.total
df['ae'] = df.afp / df.total
df['cp'] = df.ctp / (df.ctp + df.cfp)
df['ap'] = df.atp / (df.atp + df.afp)
df['throughput'] = (df.atp + df.afp) / df.total
df = df.sort_values('ratio')
for i in df:
if df[i].dtype == np.float64: df[i] = round(df[i], 4)
merge_par_test = df.loc[(df.th.notnull()) & (df['th'] != .995)]
df = df.loc[(df.th.isnull()) | (df['th'] == .995)]
to_latex(df)
#make_plot(df, 'sprobe', xmin=.19, var='ce')
# 1.2 prune vs bfs - done
'''
make_plot(df, 'sprobe', xmin=.19, var='ce', drop='merge',
save='sprobe-ce-prune')
make_plot(df, 'sprobe', xmin=.19, var='cp', drop='merge',
save='sprobe-cp-prune')
# 2.1 merging - done
make_plot(df, 'sprobe', xmin=.19, var='ce', drop='bfs',
save='sprobe-ce-merge')
make_plot(df, 'sprobe', xmin=.19, var='cp', drop='bfs',
save='sprobe-cp-merge')
#'''
# 2.2 different pars backdoor
'''
d = merge_par_test[['th','fm','ce']]
d['th'] = round(d['th'],2)
d['fm'] = round(d['fm'],2)
data = d.pivot_table(index='th',columns='fm',values='ce')
sns.heatmap(data, annot=True, fmt='g', cmap='viridis')
plt.xlabel('maximal frequency')
plt.ylabel('threshold')
plt.title('CE of merging with different parameters')
plt.show()
#'''
#make_plot(df, 'backdoor.rules', var='cp', save='backdoor-cp')
# 4 large nfas
'''
make_plot(df, 'backdoor.rules', ymax=.08, var='ce', save='backdoor-ce')
make_plot(df, 'backdoor.rules', var='cp', save='backdoor-cp')
# spyware
make_plot(df, 'spyware-put.rules', var='ce', save='spyware-ce')
make_plot(df, 'spyware-put.rules', var='cp', save='spyware-cp')
# imap
make_plot(df, 'imap.rules', var='ce', save='imap-ce')
make_plot(df, 'imap.rules', var='cp', save='imap-cp')
# l7
make_plot(df, 'l7-all', var='ce', save='l7-all-ce')
make_plot(df, 'l7-all', var='cp', save='l7-all-cp')
#'''
if __name__ == "__main__":
main()