Skip to content

Latest commit

 

History

History
36 lines (28 loc) · 1.51 KB

README.md

File metadata and controls

36 lines (28 loc) · 1.51 KB

Bayes classifier

Binary classification of images using Bayes classifier

Usage

There are defined 3 usage cases

  1. Evaluate trained classifier on the test set
  • ./bayes --evaluate --test p1.txt n1.txt --train p2.txt n2.txt --threshold NUM [...]
  1. Get table which contains precision and recall for possible threshold values (computed using cross-validation)
  • ./bayes --analyze --train pos.txt neg.txt [--q 2^NUM] [--method BAYESIAN_RGB | --method BAYESIAN_R] [--subsample]
  1. Calculate a probability for image img.bmp (only .bmp format supported)
  • ./bayes --predict --train pos.txt neg.txt --image img.bmp [--q 2^NUM] [--method BAYESIAN_RGB | --method BAYESIAN_R] [--subsample]

Command line arguments

Run ./bayes VARIANT INPUT OPTIONAL where

  • VARIANT

  • --evaluate: evaluation of implemented method

  • --analyze: show table of rates for training samples

  • --predict: predict probability for sample using defined threshold

  • INPUT

  • --test positive.txt negative.txt

  • --train positive.txt negative.txt

  • OPTIONAL

  • --method: possible values BAYESIAN_R or BAYESIAN_RGB (default is BAYESIAN_RGB)

  • --q NUM: change size of histogram dimensions (default 16)

  • --subsample: subsample images to descrease exec time (default not use)

Examples

  • ./bayes --evaluate --threshold 0.37 --subsample
  • ./bayes --evaluate --train p1.txt n1.txt --test p2.txt n2.txt --threshold 0.34
  • ./bayes --analyze --train p.txt n.txt
  • ./bayes --train p1.txt n1.txt --test --image img.bmp