-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
176 lines (145 loc) · 5.13 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import torch
from tqdm import tqdm
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import os
import time
import networkx as nx
import random
plt.rc('font',family='Times New Roman')
plt.rcParams['axes.unicode_minus'] = False
from pylab import mpl
mpl.rcParams['font.size'] = 18
def make_dir(file_path):
if not os.path.exists(file_path):
os.makedirs(file_path)
def set_seed(seed=0):
torch.manual_seed(seed)
np.random.seed(seed)
torch.cuda.manual_seed_all(seed)
random.seed(seed)
torch.backends.cudnn.deterministic=True
torch.backends.cudnn.benchmark=False
def train(epoch,model,train_loader,optimizer,criterion,device,adj=None):
model.train()
running_loss = 0.0
for data, label in tqdm(train_loader):
label=label.to(device)
if adj is not None:
adj=adj.to(device)
data=data.to(device)
outputs=model(data,adj)
else:
data=data.to(device)
outputs=model(data)
loss = criterion(outputs, label)
loss=loss.mean()
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss+=loss.item()
print("train epoch[{}] loss:{:.3f}".format(epoch+1,running_loss/len(train_loader)))
def test(epoch,model,test_loader,criterion,n_class,device,adj=None):
t_start=time.perf_counter()
model.eval()
acc=0.0
running_loss = 0.0
confusion_matrix = torch.zeros(n_class, n_class)
with torch.no_grad():
for data, label in tqdm(test_loader):
label=label.to(device)
if adj is not None:
adj=adj.to(device)
data=data.to(device)
outputs=model(data,adj)
else:
data=data.to(device)
outputs=model(data)
loss = criterion(outputs, label)
loss=loss.mean()
running_loss+=loss.item()
predict_y=torch.max(outputs,dim=1)[1]
label_y=torch.argmax(label)
confusion_matrix[label_y.long(), predict_y.long()] += 1
if predict_y[0] == label_y:
acc += 1
t_end=time.perf_counter()
t_mean=(t_end-t_start)/len(test_loader)
val_acc=acc/len(test_loader)
confusion_matrix=confusion_matrix.detach().cpu().numpy()
confusion_matrix=np.rint(100*confusion_matrix/confusion_matrix.sum(axis=1)[:, np.newaxis])
print("test epoch[{}] loss:{:.3f}".format(epoch+1,running_loss/len(test_loader)))
return confusion_matrix,val_acc,t_mean
def v_confusion_matrix(cm,class_list,title=None,save_path=None):
cm=pd.DataFrame(cm,index=class_list,columns=class_list)
plt.figure(figsize=(6,6))
sns_plot=sns.heatmap(cm,annot=True,linewidth=0.5,fmt=".4g",cmap="binary",cbar=False)#cmap:'Reds/Blues','binary',YlGnBu','RdBu_r'
sns_plot.tick_params(labelsize=16,direction='out')
plt.xlabel("Predicted Class")
plt.ylabel("True Class")
if title is not None:
plt.title(title)
if save_path is not None:
plt.savefig(save_path,bbox_inches="tight",dpi=300)
def select_channel(n,items):
N = len(items)
set_all=[]
for i in range(2**N):
combo = []
for j in range(N):
if(i >> j ) % 2 == 1:
combo.append(items[j])
if len(combo) == n:
set_all.append(combo)
return set_all
def get_adjmatrix(args):
sensor_loc_list=np.array([3,11,2,12,10,9,15,16,8,5,7,1,4,6,13,14])-1#minus 1:crresponding to index
group_list=[sensor_loc_list[:6],sensor_loc_list[6:12],sensor_loc_list[12:]]
graph_dict={}
for group in group_list:
for i in group:
if i in args.channels:
connect_node=[]
for j in group:
if j!=i and j in args.channels:#no circle
connect_node.append(j)
graph_dict[i]=connect_node
graph_dict=dict(sorted(graph_dict.items(),key=lambda item:item[0]))#sort the graph_dict by key
# print(graph_dict)
adj=nx.adjacency_matrix(nx.from_dict_of_lists(graph_dict)).toarray()
adj=preprocess_adj(adj)
return adj
def preprocess_adj(adj):
'''
Pre-process adjacency matrix
:param A: adjacency matrix
:return:
'''
I = np.eye(adj.shape[0])
A_hat = adj + I # add self-loops
D_hat_diag = np.sum(A_hat, axis=1)
D_hat_diag_inv_sqrt = np.power(D_hat_diag, -0.5)
D_hat_diag_inv_sqrt[np.isinf(D_hat_diag_inv_sqrt)] = 0.
D_hat_inv_sqrt = np.diag(D_hat_diag_inv_sqrt)
A=np.dot(np.dot(D_hat_inv_sqrt, A_hat), D_hat_inv_sqrt)
return torch.from_numpy(A).float()
def sparse_dropout(x, rate, noise_shape):
"""
:param x:
:param rate:
:param noise_shape: int scalar
:return:
"""
random_tensor = 1 - rate
random_tensor += torch.rand(noise_shape).to(x.device)
dropout_mask = torch.floor(random_tensor).byte()
dropout_mask=dropout_mask.bool()
i = x._indices()
v = x._values()
i = i[:, dropout_mask]
v = v[dropout_mask]
out = torch.sparse.FloatTensor(i, v, x.shape).to(x.device)
out = out * (1./ (1-rate))
return out