forked from TechieBoy/Volatile
-
Notifications
You must be signed in to change notification settings - Fork 0
/
background.js
272 lines (242 loc) · 8.98 KB
/
background.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
// Copyright 2018 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
'use strict';
const DB_NAME = "images"
const USERNAME = "USERNAME"
const MODEL_URL = "/weights";
let not = "Watching You";
let not_options = { type: "image", title: "Alert!", message: "Someone is watching You!", iconUrl: "monkas.png", imageUrl: "monkas.png", priority: 2 };
const EUCLID_MAX_DISTANCE = 0.6;
// TODO Fill all classes of images possible to recognize
let classes = [USERNAME];
const use_model = "yolo"; // 'ssd', 'mtcnn'
// Yolo Parameters
const yoloUseBatchProcessing = false;
const yoloParams = {
inputSize: "lg",
scoreThreshold: 0.2
}
// mtcnn parameters
const mtcnnParams = {
minFaceSize: 200
}
// SSD parameters
const ssd_min_confidence = 0.3;
let trainDescriptorsByClass = [];
chrome.runtime.onInstalled.addListener(function () {
chrome.storage.sync.set({ color: '#3aa757' }, function () {
console.log('The color is green.');
});
chrome.declarativeContent.onPageChanged.removeRules(undefined, function () {
chrome.declarativeContent.onPageChanged.addRules([{
conditions: [new chrome.declarativeContent.PageStateMatcher({
pageUrl: {
ports: [[80, 9000]]
},
})],
actions: [new chrome.declarativeContent.ShowPageAction()]
}]);
});
});
let lastTabIds = [];
chrome.runtime.onMessageExternal.addListener(
function (request, sender, sendResponse) {
if (request.verify != undefined) {
// Verify user face and then upload documents
console.log(sender.tab.id);
lastTabIds.push(sender.tab.id);
chrome.tabs.create({
url: chrome.extension.getURL('identify.html'),
active: true,
}, function (tab) {
chrome.windows.create({
tabId: tab.id,
type: 'popup',
top: Math.round(0.05 * request.h),
left: Math.round(1.0 * request.w),
height: Math.round(0.35 * request.h),
width: Math.round(0.58 * request.w),
focused: true
});
});
}
});
chrome.runtime.onMessage.addListener(
async function (request, sender, sendResponse) {
console.log(sender.tab ?
"from a content script:" + sender.tab.url :
"from the extension");
if (request.verified != undefined) {
console.log(lastTabIds);
let tabi = lastTabIds.pop();
let data = { frombg: true };
Object.assign(data, request.data);
chrome.tabs.sendMessage(tabi, data);
}
if (request.suicide == true) {
// main();
chrome.tabs.remove(sender.tab.id);
}
});
function sendOrder(order) {
chrome.tabs.query({ active: true, currentWindow: true }, function (tabs) {
chrome.tabs.sendMessage(tabs[0].id, { order: order });
});
}
async function load_models() {
const MODEL_URL = "/weights";
await faceapi.loadFaceRecognitionModel(MODEL_URL);
switch (use_model) {
case "yolo":
await faceapi.loadTinyYolov2Model(MODEL_URL);
// For full landmark
await faceapi.loadFaceLandmarkModel(MODEL_URL);
// For tiny landmark
// await faceapi.loadFaceLandmarkTinyModel(MODEL_URL)
break;
case "mtcnn":
await faceapi.loadMtcnnModel(MODEL_URL);
break;
case "ssd":
await faceapi.loadSsdMobilenetv1Model(MODEL_URL);
// For full landmark
await faceapi.loadFaceLandmarkModel(MODEL_URL);
// For tiny landmark
// await faceapi.loadFaceLandmarkTinyModel(MODEL_URL)
break;
}
}
async function doesMatch(inputEl) {
const { width, height } = inputEl;
let fullFaceDescriptions;
switch (use_model) {
case "yolo":
fullFaceDescriptions = (await faceapi.allFacesTinyYolov2(inputEl, yoloParams, yoloUseBatchProcessing))
.map(fd => fd.forSize(width, height));
break;
case "mtcnn":
fullFaceDescriptions = (await faceapi.allFacesMtcnn(inputEl, mtcnnParams))
.map(fd => fd.forSize(width, height));
break;
case "ssd":
fullFaceDescriptions = (await faceapi.allFacesSsdMobilenetv1(inputEl, ssd_min_confidence))
.map(fd => fd.forSize(width, height));
break;
}
if (!Array.isArray(fullFaceDescriptions) || !fullFaceDescriptions.length) {
// TODO no Face found in image
sendOrder("blank_screen");
console.log("No face in image");
return false;
}
let num_faces = fullFaceDescriptions.length;
for (let descripton of fullFaceDescriptions) {
const { detection, landmarks, descriptor } = descripton;
const bestMatch = getBestMatch(trainDescriptorsByClass, descriptor);
if (bestMatch.distance < EUCLID_MAX_DISTANCE) {
console.log("Found Match of " + bestMatch.className + " " + ((1 - bestMatch.distance) * 100).toFixed(2) + "%.");
if (num_faces > 1) {
sendOrder("notify")
console.log("Someone is watching you");
chrome.notifications.create(not, not_options);
}
else {
sendOrder("show_screen")
console.log("You are alone lol");
chrome.notifications.clear(not);
}
return true;
} else {
console.log("Unknown Face in image");
chrome.notifications.clear(not);
sendOrder("blank_screen");
return false;
}
}
}
// Fetch images of each class and return their descriptors and classname
async function initTrainDescriptorsByClass(net, values) {
return Promise.all(classes.map(
async className => {
const descriptors = []
for (let value of values) {
const img = await faceapi.bufferToImage(value);
descriptors.push(await net.computeFaceDescriptor(img));
}
return {
descriptors,
className
}
}
));
}
// Best match using eucledian distance
function getBestMatch(descriptorsByClass, queryDescriptor) {
function computeMeanDistance(descriptorsOfClass) {
return faceapi.round(
descriptorsOfClass
.map(d => faceapi.euclideanDistance(d, queryDescriptor))
.reduce((d1, d2) => d1 + d2, 0) /
(descriptorsOfClass.length || 1)
)
}
return descriptorsByClass
.map(
({ descriptors, className }) => ({
distance: computeMeanDistance(descriptors),
className
})
)
.reduce((best, curr) => best.distance < curr.distance ? best : curr)
}
// May be useful for debugging
function draw_detections(canvas, detection, landmarks, bestMatch, EUCLID_MAX_DISTANCE) {
faceapi.drawDetection('overlay', [detection], { withScore: false })
faceapi.drawLandmarks('overlay', landmarks, { lineWidth: 4, color: 'red' })
const text = `${bestMatch.distance < EUCLID_MAX_DISTANCE ? bestMatch.className : 'unkown'} (${bestMatch.distance})`
const { x, y, height: boxHeight } = detection.getBox();
faceapi.drawText(
canvas.getContext('2d'),
x,
y + boxHeight,
text,
Object.assign(faceapi.getDefaultDrawOptions(), { color: 'red', fontSize: 16 })
);
}
async function initGlobals() {
let store = new IdbKvStore(DB_NAME);
let values;
try {
values = await store.get(USERNAME);
} catch (err) {
console.error("Error while getting from db");
}
console.log("Loading Models for " + use_model);
await load_models();
console.log("Loaded Models");
console.log("Initializing Train Descriptors!");
trainDescriptorsByClass = await initTrainDescriptorsByClass(faceapi.recognitionNet, values);
console.log("Initialized Train Descriptors Successfully!");
}
async function runDetection(imageCapture) {
let image = await imageCapture.takePhoto();
let imgObject = new Image();
imgObject.src = URL.createObjectURL(image);
await doesMatch(imgObject);
setTimeout(runDetection, 1, imageCapture);
}
async function main() {
console.log('Background main started');
await initGlobals();
navigator.mediaDevices.getUserMedia({ video: true })
.then(gotMedia)
.catch(error => console.error('getUserMedia() error:', error));
async function gotMedia(mediaStream) {
// Use mediastream to do whatever you want
const mediaStreamTrack = mediaStream.getVideoTracks()[0];
const imageCapture = new ImageCapture(mediaStreamTrack);
console.log('Background infinite check started');
runDetection(imageCapture);
}
}