forked from wanglimin/dense_flow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
denseFlow_gpu.cpp
174 lines (145 loc) · 4.65 KB
/
denseFlow_gpu.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#include "opencv2/video/tracking.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/gpu/gpu.hpp"
#include <cstring>
#include <stdio.h>
#include <iostream>
#include <dirent.h>
using namespace cv;
using namespace cv::gpu;
static void convertFlowToImage(const Mat &flow_x, const Mat &flow_y, Mat &img_x, Mat &img_y,
double lowerBound, double higherBound) {
#define CAST(v, L, H) ((v) > (H) ? 255 : (v) < (L) ? 0 : cvRound(255*((v) - (L))/((H)-(L))))
for (int i = 0; i < flow_x.rows; ++i) {
for (int j = 0; j < flow_y.cols; ++j) {
float x = flow_x.at<float>(i,j);
float y = flow_y.at<float>(i,j);
img_x.at<uchar>(i,j) = CAST(x, lowerBound, higherBound);
img_y.at<uchar>(i,j) = CAST(y, lowerBound, higherBound);
}
}
#undef CAST
}
static void drawOptFlowMap(const Mat& flow, Mat& cflowmap, int step,double, const Scalar& color){
for(int y = 0; y < cflowmap.rows; y += step)
for(int x = 0; x < cflowmap.cols; x += step)
{
const Point2f& fxy = flow.at<Point2f>(y, x);
line(cflowmap, Point(x,y), Point(cvRound(x+fxy.x), cvRound(y+fxy.y)),
color);
circle(cflowmap, Point(x,y), 2, color, -1);
}
}
int main(int argc, char** argv){
// IO operation
struct dirent *direntp;
DIR *dirp=opendir("/home/kjin/ActionRecognition/dense_flow-master/test/");
while((direntp=readdir(dirp))!=NULL)
{
char temp[30];
strcat(temp,"{ f | vidFile |");
strcat(temp,direntp->d_name);
strcat(temp,"| filename of video }");
//static char temp_t[30];
//strcpy(temp_t,temp);
const char* keys =
{
(const)temp
"{ x | xFlowFile | flow_x | filename of flow x component }"
"{ y | yFlowFile | flow_y | filename of flow x component }"
"{ i | imgFile | image | filename of flow image}"
"{ b | bound | 15 | specify the maximum of optical flow}"
"{ t | type | 0 | specify the optical flow algorithm }"
"{ d | device_id | 0 | set gpu id}"
"{ s | step | 1 | specify the step for frame sampling}"
};
CommandLineParser cmd(argc, argv, keys);
string vidFile = cmd.get<string>("vidFile");
string xFlowFile = cmd.get<string>("xFlowFile");
string yFlowFile = cmd.get<string>("yFlowFile");
string imgFile = cmd.get<string>("imgFile");
int bound = cmd.get<int>("bound");
int type = cmd.get<int>("type");
int device_id = cmd.get<int>("device_id");
int step = cmd.get<int>("step");
VideoCapture capture(vidFile);
if(!capture.isOpened()) {
printf("Could not initialize capturing..\n");
return -1;
}
int frame_num = 0;
Mat image, prev_image, prev_grey, grey, frame, flow_x, flow_y;
GpuMat frame_0, frame_1, flow_u, flow_v;
setDevice(device_id);
FarnebackOpticalFlow alg_farn;
OpticalFlowDual_TVL1_GPU alg_tvl1;
BroxOpticalFlow alg_brox(0.197f, 50.0f, 0.8f, 10, 77, 10);
while(true) {
capture >> frame;
if(frame.empty())
break;
if(frame_num == 0) {
image.create(frame.size(), CV_8UC3);
grey.create(frame.size(), CV_8UC1);
prev_image.create(frame.size(), CV_8UC3);
prev_grey.create(frame.size(), CV_8UC1);
frame.copyTo(prev_image);
cvtColor(prev_image, prev_grey, CV_BGR2GRAY);
frame_num++;
int step_t = step;
while (step_t > 1){
capture >> frame;
step_t--;
}
continue;
}
frame.copyTo(image);
cvtColor(image, grey, CV_BGR2GRAY);
// Mat prev_grey_, grey_;
// resize(prev_grey, prev_grey_, Size(453, 342));
// resize(grey, grey_, Size(453, 342));
frame_0.upload(prev_grey);
frame_1.upload(grey);
// GPU optical flow
switch(type){
case 0:
alg_farn(frame_0,frame_1,flow_u,flow_v);
break;
case 1:
alg_tvl1(frame_0,frame_1,flow_u,flow_v);
break;
case 2:
GpuMat d_frame0f, d_frame1f;
frame_0.convertTo(d_frame0f, CV_32F, 1.0 / 255.0);
frame_1.convertTo(d_frame1f, CV_32F, 1.0 / 255.0);
alg_brox(d_frame0f, d_frame1f, flow_u,flow_v);
break;
}
flow_u.download(flow_x);
flow_v.download(flow_y);
// Output optical flow
Mat imgX(flow_x.size(),CV_8UC1);
Mat imgY(flow_y.size(),CV_8UC1);
convertFlowToImage(flow_x,flow_y, imgX, imgY, -bound, bound);
char tmp[20];
sprintf(tmp,"_%05d.jpg",int(frame_num));
// Mat imgX_, imgY_, image_;
// resize(imgX,imgX_,cv::Size(340,256));
// resize(imgY,imgY_,cv::Size(340,256));
// resize(image,image_,cv::Size(340,256));
imwrite(xFlowFile + tmp,imgX);
imwrite(yFlowFile + tmp,imgY);
imwrite(imgFile + tmp, image);
std::swap(prev_grey, grey);
std::swap(prev_image, image);
frame_num = frame_num + 1;
int step_t = step;
while (step_t > 1){
capture >> frame;
step_t--;
}
}
return 0;
}
}