You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Seed value for the experiment is 4321
GPU name -> NVIDIA GeForce RTX 3060 Laptop GPU
GPU feat -> _CudaDeviceProperties(name='NVIDIA GeForce RTX 3060 Laptop GPU', major=8, minor=6, total_memory=6143MB, multi_processor_count=30)
{'BODY_REPRESENTATION': '2D',
'CUDNN': CfgNode({'BENCHMARK': True, 'DETERMINISTIC': False, 'ENABLED': True}),
'DATASET': {'AIST': {'DETECTED_PATH': './data\detected_poses/aist',
'GROUND_TRUTH_PATH': './data\groundtruth_poses/aist',
'KEYPOINT_NUM': 14,
'KEYPOINT_ROOT': [2, 3]},
'H36M': {'DETECTED_PATH': './data\detected_poses/h36m',
'GROUND_TRUTH_PATH': './data\groundtruth_poses/h36m',
'KEYPOINT_NUM': 17,
'KEYPOINT_ROOT': [0]},
'JHMDB': {'DETECTED_PATH': './data\detected_poses/jhmdb',
'GROUND_TRUTH_PATH': './data\groundtruth_poses/jhmdb',
'KEYPOINT_NUM': 15,
'KEYPOINT_ROOT': [2]},
'PW3D': {'DETECTED_PATH': './data\detected_poses/pw3d',
'GROUND_TRUTH_PATH': './data\groundtruth_poses/pw3d',
'KEYPOINT_NUM': 14,
'KEYPOINT_ROOT': [2, 3]}},
'DATASET_NAME': 'jhmdb',
'DEBUG': True,
'DEVICE': 'cuda',
'ESTIMATOR': 'simplebaseline',
'EVALUATE': {'DECODER': False,
'INTERP': 'linear',
'PRETRAINED': 'results/30-08-2022_16-06-59_jhmdb_simplebaseline_N10_10/EP68_PCK@0.05_0.89_checkpoint.pth.tar',
'RELATIVE_IMPROVEMENT': False,
'ROOT_RELATIVE': True,
'SLIDE_WINDOW_STEP_Q': 1,
'SLIDE_WINDOW_STEP_SIZE': 10},
'EXP_NAME': 'jhmdb_simplebaseline_N10_1_256',
'GPUS': ['0'],
'LOG': CfgNode({'NAME': ''}),
'LOGDIR': 'results\29-10-2022_17-15-29_jhmdb_simplebaseline_N10_1_256',
'LOSS': CfgNode({'LAMADA': 5.0, 'W_DECODER': 1.0}),
'MODEL': {'DECODER': 'transformer',
'DECODER_EMBEDDING_DIMENSION': 256,
'DECODER_HEAD': 4,
'DECODER_INTERP': 'linear',
'DECODER_RESIDUAL': True,
'DECODER_TOKEN_WINDOW': 5,
'DECODER_TRANSFORMER_BLOCK': 5,
'DROPOUT': 0.1,
'ENCODER_EMBEDDING_DIMENSION': 256,
'ENCODER_HEAD': 4,
'ENCODER_RESIDUAL': True,
'ENCODER_TRANSFORMER_BLOCK': 5,
'INTERVAL_N': 10,
'NAME': '',
'SAMPLE_TYPE': 'uniform',
'SLIDE_WINDOW': True,
'SLIDE_WINDOW_Q': 1,
'SLIDE_WINDOW_SIZE': 11,
'TYPE': 'network'},
'OUTPUT_DIR': 'results',
'SAMPLE_INTERVAL': 10,
'SEED_VALUE': 4321,
'SMPL_MODEL_DIR': 'data/smpl/',
'TRAIN': {'BATCH_SIZE': 16,
'EPOCH': 70,
'LR': 0.001,
'LRDECAY': 0.95,
'PRE_NORM': False,
'RESUME': None,
'USE_6D_SMPL': False,
'USE_SMPL_LOSS': False,
'VALIDATE': True,
'WORKERS_NUM': 0},
'VIS': {'END': 100,
'INPUT_VIDEO_NUMBER': 160,
'INPUT_VIDEO_PATH': 'data/videos/',
'OUTPUT_VIDEO_PATH': 'demo/',
'START': 0}}
#############################################################
You are loading the [training set] of dataset [jhmdb]
You are using pose esimator [simplebaseline]
The type of the data is [2D]
The frame number is [24372]
The sequence number is [687]
#############################################################
#############################################################
You are loading the [testing set] of dataset [jhmdb]
You are using pose esimator [simplebaseline]
The type of the data is [2D]
The frame number is [9228]
The sequence number is [261]
#############################################################
Slide window: 11
Sample interval: 10
Traceback (most recent call last):
File "train.py", line 109, in
main(cfg)
File "train.py", line 96, in main
Trainer(train_dataloader=train_loader,
File "D:\GitLoadWareHouse\HANet\lib\core\trainer.py", line 71, in run
self.train()
File "D:\GitLoadWareHouse\HANet\lib\core\trainer.py", line 124, in train
predicted_3d_pos, decoderd_3d_pos = self.model(
File "D:\Environment\anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "D:\GitLoadWareHouse\HANet\lib\models\HANet.py", line 175, in forward
self.hierarchical_encoder, self.decoder = self.transformer.forward(
File "D:\GitLoadWareHouse\HANet\lib\models\HANet.py", line 335, in forward
output = self.decode(mem, encoder_mask, encoder_pos_embed[0], trans_tgt,
File "D:\GitLoadWareHouse\HANet\lib\models\HANet.py", line 373, in decode
hs = self.decoder(tgt,
File "D:\Environment\anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "D:\GitLoadWareHouse\HANet\lib\models\HANet.py", line 429, in forward
output = layer(output,
File "D:\Environment\anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "D:\GitLoadWareHouse\HANet\lib\models\HANet.py", line 633, in forward
return self.forward_post(tgt, memory, tgt_mask, memory_mask,
File "D:\GitLoadWareHouse\HANet\lib\models\HANet.py", line 570, in forward_post
tgt2 = self.self_attn(q,
File "D:\Environment\anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "D:\Environment\anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\activation.py", line 1153, in forward
attn_output, attn_output_weights = F.multi_head_attention_forward(
File "D:\Environment\anaconda3\envs\pytorch\lib\site-packages\torch\nn\functional.py", line 5179, in multi_head_attention_forward
attn_output, attn_output_weights = _scaled_dot_product_attention(q, k, v, attn_mask, dropout_p)
File "D:\Environment\anaconda3\envs\pytorch\lib\site-packages\torch\nn\functional.py", line 4852, in _scaled_dot_product_attention
attn = torch.baddbmm(attn_mask, q, k.transpose(-2, -1))
RuntimeError: "baddbmm_cuda" not implemented for 'Int'
�[?25h
Hello, the author. I encountered this problem during training. How can I solve it?
The text was updated successfully, but these errors were encountered:
Namespace(body_representation='2D', cfg='configs/config_jhmdb_simplebaseline_2D.yaml', dataset_name='jhmdb', estimator='simplebaseline')
Seed value for the experiment is 4321
GPU name -> NVIDIA GeForce RTX 3060 Laptop GPU
GPU feat -> _CudaDeviceProperties(name='NVIDIA GeForce RTX 3060 Laptop GPU', major=8, minor=6, total_memory=6143MB, multi_processor_count=30)
{'BODY_REPRESENTATION': '2D',
'CUDNN': CfgNode({'BENCHMARK': True, 'DETERMINISTIC': False, 'ENABLED': True}),
'DATASET': {'AIST': {'DETECTED_PATH': './data\detected_poses/aist',
'GROUND_TRUTH_PATH': './data\groundtruth_poses/aist',
'KEYPOINT_NUM': 14,
'KEYPOINT_ROOT': [2, 3]},
'H36M': {'DETECTED_PATH': './data\detected_poses/h36m',
'GROUND_TRUTH_PATH': './data\groundtruth_poses/h36m',
'KEYPOINT_NUM': 17,
'KEYPOINT_ROOT': [0]},
'JHMDB': {'DETECTED_PATH': './data\detected_poses/jhmdb',
'GROUND_TRUTH_PATH': './data\groundtruth_poses/jhmdb',
'KEYPOINT_NUM': 15,
'KEYPOINT_ROOT': [2]},
'PW3D': {'DETECTED_PATH': './data\detected_poses/pw3d',
'GROUND_TRUTH_PATH': './data\groundtruth_poses/pw3d',
'KEYPOINT_NUM': 14,
'KEYPOINT_ROOT': [2, 3]}},
'DATASET_NAME': 'jhmdb',
'DEBUG': True,
'DEVICE': 'cuda',
'ESTIMATOR': 'simplebaseline',
'EVALUATE': {'DECODER': False,
'INTERP': 'linear',
'PRETRAINED': 'results/30-08-2022_16-06-59_jhmdb_simplebaseline_N10_10/EP68_PCK@0.05_0.89_checkpoint.pth.tar',
'RELATIVE_IMPROVEMENT': False,
'ROOT_RELATIVE': True,
'SLIDE_WINDOW_STEP_Q': 1,
'SLIDE_WINDOW_STEP_SIZE': 10},
'EXP_NAME': 'jhmdb_simplebaseline_N10_1_256',
'GPUS': ['0'],
'LOG': CfgNode({'NAME': ''}),
'LOGDIR': 'results\29-10-2022_17-15-29_jhmdb_simplebaseline_N10_1_256',
'LOSS': CfgNode({'LAMADA': 5.0, 'W_DECODER': 1.0}),
'MODEL': {'DECODER': 'transformer',
'DECODER_EMBEDDING_DIMENSION': 256,
'DECODER_HEAD': 4,
'DECODER_INTERP': 'linear',
'DECODER_RESIDUAL': True,
'DECODER_TOKEN_WINDOW': 5,
'DECODER_TRANSFORMER_BLOCK': 5,
'DROPOUT': 0.1,
'ENCODER_EMBEDDING_DIMENSION': 256,
'ENCODER_HEAD': 4,
'ENCODER_RESIDUAL': True,
'ENCODER_TRANSFORMER_BLOCK': 5,
'INTERVAL_N': 10,
'NAME': '',
'SAMPLE_TYPE': 'uniform',
'SLIDE_WINDOW': True,
'SLIDE_WINDOW_Q': 1,
'SLIDE_WINDOW_SIZE': 11,
'TYPE': 'network'},
'OUTPUT_DIR': 'results',
'SAMPLE_INTERVAL': 10,
'SEED_VALUE': 4321,
'SMPL_MODEL_DIR': 'data/smpl/',
'TRAIN': {'BATCH_SIZE': 16,
'EPOCH': 70,
'LR': 0.001,
'LRDECAY': 0.95,
'PRE_NORM': False,
'RESUME': None,
'USE_6D_SMPL': False,
'USE_SMPL_LOSS': False,
'VALIDATE': True,
'WORKERS_NUM': 0},
'VIS': {'END': 100,
'INPUT_VIDEO_NUMBER': 160,
'INPUT_VIDEO_PATH': 'data/videos/',
'OUTPUT_VIDEO_PATH': 'demo/',
'START': 0}}
#############################################################
You are loading the [training set] of dataset [jhmdb]
You are using pose esimator [simplebaseline]
The type of the data is [2D]
The frame number is [24372]
The sequence number is [687]
#############################################################
#############################################################
You are loading the [testing set] of dataset [jhmdb]
You are using pose esimator [simplebaseline]
The type of the data is [2D]
The frame number is [9228]
The sequence number is [261]
#############################################################
Slide window: 11
Sample interval: 10
Traceback (most recent call last):
File "train.py", line 109, in
main(cfg)
File "train.py", line 96, in main
Trainer(train_dataloader=train_loader,
File "D:\GitLoadWareHouse\HANet\lib\core\trainer.py", line 71, in run
self.train()
File "D:\GitLoadWareHouse\HANet\lib\core\trainer.py", line 124, in train
predicted_3d_pos, decoderd_3d_pos = self.model(
File "D:\Environment\anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "D:\GitLoadWareHouse\HANet\lib\models\HANet.py", line 175, in forward
self.hierarchical_encoder, self.decoder = self.transformer.forward(
File "D:\GitLoadWareHouse\HANet\lib\models\HANet.py", line 335, in forward
output = self.decode(mem, encoder_mask, encoder_pos_embed[0], trans_tgt,
File "D:\GitLoadWareHouse\HANet\lib\models\HANet.py", line 373, in decode
hs = self.decoder(tgt,
File "D:\Environment\anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "D:\GitLoadWareHouse\HANet\lib\models\HANet.py", line 429, in forward
output = layer(output,
File "D:\Environment\anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "D:\GitLoadWareHouse\HANet\lib\models\HANet.py", line 633, in forward
return self.forward_post(tgt, memory, tgt_mask, memory_mask,
File "D:\GitLoadWareHouse\HANet\lib\models\HANet.py", line 570, in forward_post
tgt2 = self.self_attn(q,
File "D:\Environment\anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "D:\Environment\anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\activation.py", line 1153, in forward
attn_output, attn_output_weights = F.multi_head_attention_forward(
File "D:\Environment\anaconda3\envs\pytorch\lib\site-packages\torch\nn\functional.py", line 5179, in multi_head_attention_forward
attn_output, attn_output_weights = _scaled_dot_product_attention(q, k, v, attn_mask, dropout_p)
File "D:\Environment\anaconda3\envs\pytorch\lib\site-packages\torch\nn\functional.py", line 4852, in _scaled_dot_product_attention
attn = torch.baddbmm(attn_mask, q, k.transpose(-2, -1))
RuntimeError: "baddbmm_cuda" not implemented for 'Int'
�[?25h
Hello, the author. I encountered this problem during training. How can I solve it?
The text was updated successfully, but these errors were encountered: