-
Notifications
You must be signed in to change notification settings - Fork 35
/
Fisherfaces.cpp
46 lines (36 loc) · 1.63 KB
/
Fisherfaces.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
/* Copyright (C) 2016 Kristian Sloth Lauszus. All rights reserved.
This software may be distributed and modified under the terms of the GNU
General Public License version 2 (GPL2) as published by the Free Software
Foundation and appearing in the file GPL2.TXT included in the packaging of
this file. Please note that GPL2 Section 2[b] requires that all works based
on this software must also be made publicly available under the terms of
the GPL2 ("Copyleft").
Contact information
-------------------
Kristian Sloth Lauszus
Web : http://www.lauszus.com
e-mail : lauszus@gmail.com
*/
#include <iostream>
#include <Eigen/Dense> // http://eigen.tuxfamily.org
#include "Fisherfaces.h"
using namespace std;
using namespace Eigen;
void Fisherfaces::train(const MatrixXi &images, const VectorXi &classes) {
this->n_pixels = images.rows();
size_t n_images = classes.size(); // Get number of images
assert(classes.minCoeff() == 1); // Class labels should start at 1 and increment by 1
int c = classes.maxCoeff(); // Calculate the number of classes
PCA::compute(images, n_images - c);
this->V = PCA::U; // Store PCA eigenvector temporarily, as it used for the projection
MatrixXf W_pca = project(images); // Project images onto subspace
this->numComponents = LDA::compute(W_pca, classes, c - 1); // Copy number of components from LDA
#ifndef NDEBUG
cout << "Calculate weights for all images" << endl;
#endif
this->V = PCA::U*LDA::U; // Calculate Fisherfaces
this->W_all = project(images); // Calculate weights
#ifndef NDEBUG
cout << "W_all: " << W_all.rows() << " x " << W_all.cols() << endl;
#endif
}