forked from CalciferZh/SMPL
-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain_acos_regressor_24_joints.py
249 lines (216 loc) · 9.73 KB
/
train_acos_regressor_24_joints.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import torch
from torch import nn
import os
from torch import optim
import numpy as np
import pickle
from smpl_torch_batch import SMPLModel
from torch.utils.data import Dataset, DataLoader
from sys import platform
class Joint2SMPLDataset(Dataset):
'''
Regression Data with Joint and Theta, Beta.
Predict Pose angles and Betas from input joints.
Train/val: 1:1
'''
def __init__(self, pickle_file, batch_size=64,fix_beta_zero=False):
super(Joint2SMPLDataset, self).__init__()
assert(os.path.isfile(pickle_file))
with open(pickle_file, 'rb') as f:
dataset = pickle.load(f)
self.thetas = dataset['thetas']
self.joints = dataset['joints']
self.fix_beta_zero = fix_beta_zero
if not fix_beta_zero:
self.betas = dataset['betas']
print(self.joints.shape)
self.batch_size = batch_size
self.length = self.joints.shape[0]
print(self.length)
def __getitem__(self, item):
js = self.joints[item]
ts = self.thetas[item]
if self.fix_beta_zero:
bs = np.zeros(10, dtype=np.float64)
else:
bs = self.betas[item]
return {'joints': js, 'thetas': ts, 'betas': bs}
def rand_val_batch(self):
length = self.length // self.batch_size
item = np.random.randint(0, length)
js = self.joints[item*self.batch_size: (item+1)*self.batch_size]
ts = self.thetas[item*self.batch_size: (item+1)*self.batch_size]
if self.fix_beta_zero:
bs = np.zeros((self.batch_size, 10), dtype=np.float64)
else:
bs = self.betas[item*self.batch_size: (item+1)*self.batch_size]
return {'joints': js, 'thetas': ts, 'betas': bs}
def __len__(self):
return self.length
class ResBlock1d(nn.Module):
def __init__(self, indim=256, outdim=None, use_dropout=False):
super(ResBlock1d, self).__init__()
if outdim is None:
outdim = indim
self.indim = indim
self.outdim = outdim
model = [
nn.Linear(indim, indim),
nn.BatchNorm1d(indim),
nn.LeakyReLU(0.2)
]
if use_dropout:
model.append(nn.Dropout(0.5))
self.model = nn.Sequential(*model)
if outdim != indim:
self.linear = nn.Linear(indim, outdim)
def forward(self, x):
out = x + self.model(x)
if self.outdim != self.indim:
out = self.linear(out)
return out
class ResidualRegressor(nn.Module):
def __init__(self, hidden_dim=256, indim=57, thetadim=72, betadim=10,
batch_size=64, hidden_layer=3, use_dropout=False):
super(ResidualRegressor, self).__init__()
model = [
nn.Linear(indim, hidden_dim),
nn.BatchNorm1d(hidden_dim),
nn.LeakyReLU(0.2)
]
for i in range(hidden_layer):
model += [ResBlock1d(indim=hidden_dim, use_dropout=use_dropout)]
self.feature_extractor = nn.Sequential(*model)
self.theta_predictor = nn.Linear(hidden_dim, thetadim)
#self.beta_predictor = nn.Linear(hidden_dim, betadim)
def forward(self, x):
h = self.feature_extractor(x)
theta = self.theta_predictor(h)
#beta = self.beta_predictor(h)
return theta
class AcosRegressor(nn.Module):
def __init__(self, hidden_dim=256, indim=72, thetadim=72, betadim=10,
batch_size=64, hidden_layer=3, use_dropout=False):
super(AcosRegressor, self).__init__()
self.limbs_index = torch.tensor([
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24],
[2, 13, 4, 5, 6, 7, 13, 13, 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 20, 16, 21, 22, 23]
#[1, 2, 8, 9, 3, 4, 7, 8, 12, 12, 9, 10, 14, 14, 13, 13, 15, 16]
], dtype=torch.long)
self.limbs_index -= torch.ones_like(self.limbs_index) # convert to 0-index
model = [ResBlock1d(indim=23*23+24*3, outdim=hidden_dim)]
for i in range(hidden_layer):
model += [ResBlock1d(indim=hidden_dim, use_dropout=use_dropout)]
model += [nn.Linear(hidden_dim, thetadim)]
self.model = nn.Sequential(*model)
self.clamp_eps = 1e-6
self.norm_eps = 1e-9
def forward(self, x):
# expect N * 19 * 3
vec = x[:, self.limbs_index[0], :] - x[:, self.limbs_index[0], :]
# 20190220: normalize vector!!!
norm_vec = torch.norm(vec, dim=2, keepdim=True) + self.norm_eps
vec /= norm_vec
prod = torch.bmm(vec, vec.transpose(1, 2))
# 20190220;clamp input to avoid NaN
prod = torch.clamp(prod, min=(-1+self.clamp_eps), max=1-self.clamp_eps)
if torch.isnan(prod).any():
print('prod nan')
angles = torch.acos(prod).view(-1, 23*23)
if torch.isnan(angles).any():
print('angles nan')
# 20190301: Only use bone vectors and angles (Bad)
features = torch.cat((x.view(-1, 24*3), angles), dim=1)
return self.model(features)
if __name__ == '__main__':
os.environ['CUDA_VISIBLE_DEVICES']='0'
torch.backends.cudnn.enabled=True
batch_size = 64
max_batch_num = 40
#dataset = Joint2SMPLDataset('train_dataset.pickle', batch_size)
theta_var = 1.0
training_stage = 5
dataset = Joint2SMPLDataset('train_dataset_24_joints_1.0.pickle', batch_size, fix_beta_zero=True)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=0, drop_last=True)
torch.set_default_dtype(torch.float64)
device = torch.device('cuda')
reg = AcosRegressor(batch_size=batch_size).cuda()
smpl = SMPLModel(device=device,
model_path = './model_24_joints.pkl',
simplify=True
)
loss_op = nn.L1Loss()
optimizer = optim.Adam(reg.parameters(), lr=0.0005, betas=(0.5, 0.999), weight_decay=1e-4)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', factor=0.25, patience=1, verbose=True)
batch_num = 0
ckpt_path = 'checkpoints_0303_24_joints'.format(theta_var)
if not os.path.isdir(ckpt_path):
os.mkdir(ckpt_path)
if batch_num > 0 and os.path.isfile('%s/regressor_%03d.pth' % (ckpt_path, batch_num)):
state_dict = torch.load_state_dict('%s/regressor_%03d.pth' % (ckpt_path, batch_num))
reg.load(state_dict)
# copy current file into checkpoint folder to record parameters, ugly.
if platform == 'linux':
cmd = 'cp train_acos_regressor_24_joints.py ./{}/snapshot.py'.format(ckpt_path)
else:
cmd = r'copy train_acos_regressor_24_joints.py {}\snapshot.py'.format(ckpt_path)
print(cmd)
os.system(cmd)
file = open('{}/validation.txt'.format(ckpt_path), 'w')
trans = torch.zeros((batch_size, 3), dtype=torch.float64, device=device)
while batch_num < max_batch_num:
batch_num += 1
print('Epoch %03d: training...' % batch_num)
reg.train()
for (i, data) in enumerate(dataloader):
joints = torch.as_tensor(data['joints'], device=device)
thetas = torch.as_tensor(data['thetas'], device=device)
betas = torch.as_tensor(data['betas'], device=device)
pred_thetas = reg(joints)
_, recon_joints = smpl(betas, pred_thetas, trans)
loss_joints = loss_op(recon_joints, joints)
loss_thetas = loss_(pred_thetas, thetas)
loss = loss_thetas + 5 * loss_joints
optimizer.zero_grad()
loss.backward()
optimizer.step()
if i % 32 == 0:
print('batch %04d: loss joints: %10.6f loss thetas: % 10.6f' \
% (i, loss_joints.data.item(), loss_thetas.data.item()))
print('Validation: ')
reg.eval()
data = dataset.rand_val_batch()
joints = torch.as_tensor(data['joints'], device=device)
thetas = torch.as_tensor(data['thetas'], device=device)
betas = torch.as_tensor(data['betas'], device=device)
with torch.no_grad():
pred_thetas = reg(joints)
_, recon_joints = smpl(betas, pred_thetas, trans)
loss_joints = loss_op(recon_joints, joints)
loss_thetas = loss_op(pred_thetas, thetas)
line = 'batch %04d: loss joints: %10.6f loss thetas: % 10.6f' \
% (i, loss_joints.data.item(), loss_thetas.data.item())
print(line)
file.write(line+'\n')
scheduler.step(loss_joints)
if batch_num % 5 == 0:
print('Save models...')
torch.save(reg.state_dict(), '%s/regressor_%03d.pth' % (ckpt_path, batch_num))
'''
if batch_num % 20 == 0 and training_stage < 5:
# Fine-tuning on the next dataset with larger theta_var
line = 'Switching dataset from theta_var = {}'.format(theta_var)
theta_var += 0.2
training_stage += 1
dataset = Joint2SMPLDataset('train_dataset_{}.pickle'.format(training_stage),
batch_size, fix_beta_zero=True)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=0, drop_last=True)
# Renew optimizer and scheduler
optimizer = optim.Adam(reg.parameters(), lr=0.0005, betas=(0.5, 0.999), weight_decay=1e-4)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min',
factor=0.25, patience=1, verbose=True)
line += ' to theta_var = {}\n'.format(theta_var)
file.write(line)
print(line)
'''
file.close()