-
Notifications
You must be signed in to change notification settings - Fork 0
/
OtherCodes2.py
4563 lines (3482 loc) · 160 KB
/
OtherCodes2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
"""MJAhmadi_NNDL_HW4_Q1.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1F-jXcFv6xzmKIH9Z9xIm320AYFRG9lcS
"""
!nvidia-smi
"""# **Dataset Loading:**
Importing dataset from Google Drive and extracting the zipped file.
"""
!pip install --upgrade --no-cache-dir gdown
!gdown 1DArAhv1ieTdmvmu0Up8_2u5j4iVgmqn7
!mkdir Dataset
!unzip /content/archive.zip -d Dataset/
# import shutil
# import os
# folder_path = "/content/Images"
# shutil.rmtree(folder_path)
"""# Prerequisites & Data Preprocessing:
- Importing libraries
- Load the data
- Generate the vocabulary
- Create a customized dataset
- Implement padding
"""
# Prerequisites
import os # For operating system-related operations
import torch # For deep learning framework
import torchvision.transforms as T # For image transformations
import matplotlib.pyplot as plt # For visualizations
import matplotlib.image as mpimg # For working with images
from collections import Counter # For counting elements in a collection
from torch.nn.utils.rnn import pad_sequence # For padding sequences
from torch.utils.data import DataLoader, Dataset # For creating data loaders and datasets
from nltk.tokenize import RegexpTokenizer # For tokenizing text
from PIL import Image # For working with images
"""## **Data Retrieval:**
Fetching file names for captions and images.
"""
# Commented out IPython magic to ensure Python compatibility.
# %cd /content/Dataset
import pandas as pd
# Set the path to the captions file
captions_path = 'captions.txt'
# Load the captions file into a pandas DataFrame
captions_df = pd.read_csv(captions_path)
# Count the number of images with captions
num_images = len(captions_df)
# Print the total number of images with captions
print(f"Total number of images with captions: {num_images}")
# Print the number of unique images
unique_images = len(captions_df['image'].unique())
print(f"Number of unique images with captions: {unique_images}")
# Print the number of unique captions
unique_captions = len(captions_df['caption'].unique())
print(f"Number of unique captions: {unique_captions}")
# Display the first 5 rows of the DataFrame
print("\nSample captions:")
captions_df.head()
"""## **Creating a Vocabulary**"""
# Import the Vocabulary class
from nltk.tokenize import RegexpTokenizer
class Vocabulary:
def __init__(self, frequency_threshold):
# Special tokens and their corresponding indices
self.itos = {0: "<PAD>", 1: "<SOS>", 2: "<EOS>", 3: "<UNK>"}
self.stoi = {"<PAD>": 0, "<SOS>": 1, "<EOS>": 2, "<UNK>": 3}
self.frequency_threshold = frequency_threshold
def __len__(self):
# Return the total number of tokens in the vocabulary
return len(self.itos)
def tokenizer(self, text):
# Tokenize the text using a regular expression tokenizer
tokenizer = RegexpTokenizer(r'\w+')
return [token.lower() for token in tokenizer.tokenize(text)]
def build_vocab(self, caption_list):
frequencies = {}
idx = 4
# Iterate over each caption in the list
for caption in caption_list:
# Tokenize the caption
for token in self.tokenizer(caption):
# Update the token frequencies
if token not in frequencies:
frequencies[token] = 1
else:
frequencies[token] += 1
# Check if the token frequency reaches the threshold
if frequencies[token] == self.frequency_threshold:
# Add the token to the vocabulary with a new index
self.stoi[token] = idx
self.itos[idx] = token
idx += 1
def numericalize(self, text):
# Tokenize the text
tokenized_text = self.tokenizer(text)
# Convert tokens to their corresponding indices in the vocabulary
return [self.stoi[token] if token in self.stoi else self.stoi["<UNK>"] for token in tokenized_text]
# Create an instance of the Vocabulary class with a frequency threshold of 1
v = Vocabulary(frequency_threshold=1)
# Build the vocabulary using a list of captions
v.build_vocab(["I am Mohammad Javad Ahmadi, a student of Dr. Keller's Deep Learning course."])
# Print the vocabulary dictionary
print(f"Vocabulary dictionary: {v.stoi}")
# Numericalize a new text using the vocabulary
numericalized_text = v.numericalize("I am Mohammad Javad Ahmadi, a student of Dr. Keller's Deep Learning course.")
# Print the numericalized text
print(f"Numericalized text: {numericalized_text}")
"""## **Creating a Custom Dataset**"""
import pandas as pd
from torch.utils.data import Dataset
from PIL import Image
import torch
class FlickrDataset(Dataset):
def __init__(self, root_dir, caption_file, transform=None, frequency_threshold=5, data_type='train'):
# Read the caption file into a DataFrame
df = pd.read_csv(caption_file)
# Split the dataset into train and test based on the data_type
if data_type == 'train':
# Select the first 90% of the DataFrame for training
self.df = df.iloc[:int(0.9 * len(df))]
elif data_type == 'test':
# Select the remaining 10% of the DataFrame for testing
test_start_index = int(0.9 * len(df))
self.df = df.iloc[test_start_index:].reset_index(drop=True)
else:
# If data_type is neither 'train' nor 'test', do nothing
pass
self.root_dir = root_dir
self.transform = transform
# Store the image names and captions
self.imgs = self.df['image']
self.captions = self.df['caption']
# Initialize the vocabulary and build the vocabulary
self.vocab = Vocabulary(frequency_threshold)
self.vocab.build_vocab(self.captions.tolist())
def __len__(self):
# Return the length of the dataset
return len(self.df)
def __getitem__(self, index):
# Get the caption and image information for the given index
caption = self.captions[index]
image_name = self.imgs[index]
image_path = self.root_dir + '/' + image_name
img = Image.open(image_path).convert("RGB")
if self.transform is not None:
# Apply the specified transformations to the image
img = self.transform(img)
# Convert the caption to a vectorized form
vectorized_caption = [self.vocab.stoi["<SOS>"]]
vectorized_caption += self.vocab.numericalize(caption)
vectorized_caption.append(self.vocab.stoi["<EOS>"])
# Return the image and its vectorized caption as tensors
return img, torch.tensor(vectorized_caption)
"""## **Make & Preprocess Dataset and Visualizing Data Samples**"""
import matplotlib.pyplot as plt
import numpy as np
def show_image(image_tensor, title=None):
"""
Display an image represented as a tensor.
Args:
image_tensor (torch.Tensor): The input image tensor.
title (str, optional): The title of the image. Defaults to None.
"""
# Convert the image tensor to a NumPy array and change the dimensions
image_np = image_tensor.numpy().transpose((1, 2, 0))
# Display the image using matplotlib
plt.imshow(image_np)
# Set the title of the image if provided
if title is not None:
plt.title(title)
# Pause a bit to allow the plot to be updated
plt.pause(0.001)
# Import the necessary libraries
import torchvision.transforms as T
# Define the transform to be applied to the images
transforms = T.Compose([
T.Resize((224, 224)), # Resize the images to (224, 224)
T.ToTensor() # Convert the images to tensors
])
# Create instances of the FlickrDataset class for training and testing
train_dataset = FlickrDataset(
root_dir="Images", # Path to the root directory of the images
caption_file="captions.txt", # Path to the captions file
transform=transforms, # Apply the defined transforms to the images
data_type='train' # Specify the data type as 'train'
)
test_dataset = FlickrDataset(
root_dir="Images", # Path to the root directory of the images
caption_file="captions.txt", # Path to the captions file
transform=transforms, # Apply the defined transforms to the images
data_type='test' # Specify the data type as 'test'
)
from matplotlib.backends.backend_pdf import PdfPages
# Retrieve the image and captions for the first data point from the training dataset
image, captions = train_dataset[100]
# Create a new figure and plot the image
fig, ax = plt.subplots()
ax.imshow(image.permute(1, 2, 0))
# Set the title of the image
ax.set_title("Image")
# Print the tokenized captions
print("Tokenized Captions:", captions)
# Convert the tokenized captions to their corresponding words
words = [train_dataset.vocab.itos[token] for token in captions.tolist()]
# Print the sentence
print("Sentence:")
print(words)
# Save the figure as a PDF
pdf = PdfPages("image100tr.pdf")
pdf.savefig(fig)
pdf.close()
from matplotlib.backends.backend_pdf import PdfPages
# Retrieve the image and captions for the 100th data point from the training dataset
image, captions = test_dataset[100]
# Create a new figure and plot the image
fig, ax = plt.subplots()
ax.imshow(image.permute(1, 2, 0))
# Set the title of the image
ax.set_title("Image")
# Print the tokenized captions
print("Tokenized Captions:", captions)
# Convert the tokenized captions to their corresponding words
words = [test_dataset.vocab.itos[token] for token in captions.tolist()]
# Print the sentence
print("Sentence:")
print(words)
# Save the figure as a PDF
pdf = PdfPages("image100ts.pdf")
pdf.savefig(fig)
pdf.close()
"""## **Implement Padding for Sentences in Each Batch**"""
class Apppadd:
"""
Collate function to apply padding to captions with DataLoader.
"""
def __init__(self, pad_idx, batch_first=False):
"""
Initialize the Apppadd class.
Args:
pad_idx (int): The index of the padding token.
batch_first (bool): Whether to return the batch dimension as the first dimension.
"""
self.pad_idx = pad_idx
self.batch_first = batch_first
def __call__(self, batch):
"""
Apply padding to the captions in the batch.
Args:
batch (list): List of tuples containing image and caption pairs.
Returns:
torch.Tensor: Batch of images.
torch.Tensor: Batch of padded captions.
"""
# Extract images from the batch and unsqueeze them
imgs = [item[0].unsqueeze(0) for item in batch]
imgs = torch.cat(imgs, dim=0)
# Extract captions from the batch
captions = [item[1] for item in batch]
# Pad the captions using pad_sequence
captions = pad_sequence(captions, batch_first=self.batch_first, padding_value=self.pad_idx)
return imgs, captions
"""## **Evaluating Dataloaders with Padding**"""
import multiprocessing
NUM_WORKERS = multiprocessing.cpu_count()
print("Maximum number of workers:", NUM_WORKERS)
BATCH_SIZE = 4
NUM_WORKERS = 10
# Token to represent the padding
pad_idx = train_dataset.vocab.stoi["<PAD>"]
# Create a DataLoader object to load the training dataset
data_loader = DataLoader(
dataset=train_dataset, # Specify the dataset to load
batch_size=BATCH_SIZE, # Set the batch size
num_workers=NUM_WORKERS, # Set the number of worker processes for data loading
shuffle=True, # Shuffle the data for each epoch
collate_fn=Apppadd(pad_idx=pad_idx, batch_first=True) # Specify the collate function for padding captions
)
import matplotlib.pyplot as plt
import numpy as np
# Generating the iterator from the dataloader
dataiter = iter(data_loader)
# Getting the next batch
batch = next(dataiter)
# Unpacking the batch
images, captions = batch
# Determine the effective batch size
effective_batch_size = min(BATCH_SIZE, len(images))
# Showing information of each image in the batch
for i in range(effective_batch_size):
img, cap = images[i], captions[i]
# Extracting the caption label from the numericalized caption
caption_label = [train_dataset.vocab.itos[token] for token in cap.tolist()]
# Finding the index of '<EOS>' token to truncate the caption
eos_index = caption_label.index('<EOS>')
caption_label = caption_label[1:eos_index]
# Joining the caption label words into a single string
caption_label = ' '.join(caption_label)
# Create a new figure
fig = plt.figure()
# Displaying the image with the caption label
plt.imshow(np.transpose(img.numpy(), (1, 2, 0)))
plt.axis('off')
# Calculating the width of the image
img_width = img.shape[1]
# Calculating the height of the caption box
caption_height = int(img_width / 50)
# Adding a colored box with the caption label
plt.text(0, -10, caption_label, bbox=dict(facecolor='white', edgecolor='black', boxstyle='round'),
fontsize=8, color='black', ha='left', va='top')
# Save the plot as a PDF file
plt.savefig(f'captionedimage{i}.pdf', format='pdf')
# Display the plot
plt.show()
"""---------------------------------------------
# **Developing an Image Captioning Model:**
- Generate data loaders for training.
- Construct the model architecture and train the model over a specified number of epochs.
- Assess and evaluate the model's performance through testing.
"""
# Import necessary libraries
import numpy as np
import torch
import warnings
warnings.filterwarnings("ignore")
from torch.utils.data import DataLoader,Dataset
import torchvision.transforms as T
import torch
import torch.nn as nn
import torchvision.models as models
import torch.optim as optim
"""# **1. Utilize a pre-trained ResNet model for efficient feature extraction, while fine-tuning the last linear layer.**
## **Train**
### **Generate data loaders**
"""
BATCH_SIZE = 256
NUM_WORKERS = 10
pad_idx = train_dataset.vocab.stoi["<PAD>"]
# Define the transformations to be applied, including resizing, random cropping,
# converting to tensor, and normalization using ResNet statistics
transforms = T.Compose([
T.Resize(256),
T.RandomCrop(224),
T.ToTensor(),
T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
])
# Create an instance of the FlickrDataset for training
train_dataset = FlickrDataset(
root_dir="/content/Dataset/Images",
caption_file="captions.txt",
transform=transforms,
data_type='train'
)
# Create a DataLoader for the training dataset
train_loader = DataLoader(
dataset=train_dataset,
batch_size=BATCH_SIZE,
num_workers=NUM_WORKERS,
shuffle=True,
collate_fn=Apppadd(pad_idx=pad_idx, batch_first=True)
)
"""### **Model**"""
#ResNet Model
class ResNet(nn.Module):
def __init__(self, embed_size, train_resnet=False):
"""
Initialize the ResNet model with a specified embedding size.
Args:
embed_size (int): Size of the embedding output.
train_resnet (bool): Whether to train the ResNet backbone or not.
"""
super(ResNet, self).__init__()
# Load the pretrained ResNet-18 model
resnet = models.resnet18(pretrained=True)
# Set the requires_grad flag of the ResNet parameters
# to control whether they are trainable or not
for param in resnet.parameters():
param.requires_grad_(train_resnet)
# Extract the modules of the ResNet model up to the last fully connected layer
modules = list(resnet.children())[:-1]
# Create the ResNet backbone with the extracted modules
self.resnet = nn.Sequential(*modules)
# Create the embedding layer
self.embed = nn.Linear(resnet.fc.in_features, embed_size)
# Activation function and dropout layer
self.relu = nn.ReLU()
self.dropout = nn.Dropout(0.5)
def forward(self, images):
"""
Forward pass of the ResNet model.
Args:
images (tensor): Input images tensor.
Returns:
features (tensor): Embedded features tensor.
"""
features = self.dropout(self.relu(self.resnet(images)))
features = features.view(features.size(0), -1)
features = self.embed(features)
return features
# LSTM Network
class LSTM(nn.Module):
def __init__(self, embed_size, hidden_size, vocab_size, num_layers=1, drop_prob=0.5):
"""
Initialize the LSTM model with specified sizes and parameters.
Args:
embed_size (int): Size of the word embedding.
hidden_size (int): Size of the hidden state of the LSTM.
vocab_size (int): Size of the vocabulary.
num_layers (int): Number of layers in the LSTM (default: 1).
drop_prob (float): Dropout probability (default: 0.5).
"""
super().__init__()
# Word embedding layer
self.embedding = nn.Embedding(vocab_size, embed_size)
# LSTM layer
self.lstm = nn.LSTM(embed_size, hidden_size, num_layers=num_layers, batch_first=True)
# Linear layer for prediction
self.linear = nn.Linear(hidden_size, vocab_size)
# Dropout layer
self.dropout = nn.Dropout(drop_prob)
def forward(self, features, captions):
"""
Forward pass of the LSTM model.
Args:
features (tensor): Image features tensor.
captions (tensor): Captions tensor.
Returns:
x (tensor): Output tensor.
"""
# Vectorize the caption by passing it through the embedding layer
embeds = self.dropout(self.embedding(captions[:, :-1]))
# Concatenate the features and captions
x = torch.cat((features.unsqueeze(1), embeds), dim=1)
# Pass through the LSTM layer
x, _ = self.lstm(x)
# Pass through the linear layer for prediction
x = self.linear(x)
return x
def generate_caption(self, inputs, hidden=None, max_len=20, vocab=None):
"""
Generate captions given the image features.
Args:
inputs (tensor): Input tensor of image features.
hidden (tuple): Hidden state of the LSTM (default: None).
max_len (int): Maximum length of the generated caption (default: 20).
vocab (Vocab): Vocabulary object (default: None).
Returns:
caption (list): Generated caption as a list of words.
"""
# Inference part
# Given the image features, generate the captions
batch_size = inputs.size(0)
captions = []
for i in range(max_len):
output, hidden = self.lstm(inputs, hidden)
output = self.linear(output)
output = output.view(batch_size, -1)
# Select the word with the highest value
predicted_word_idx = output.argmax(dim=1)
# Save the generated word
captions.append(predicted_word_idx.item())
# End if <EOS> is detected
if vocab.itos[predicted_word_idx.item()] == "<EOS>":
break
# Send the generated word as the next caption
inputs = self.embedding(predicted_word_idx.unsqueeze(0))
# Convert the vocabulary indices to words and return the sentence
return [vocab.itos[idx] for idx in captions]
# Utilizing the powerful fusion of ResNet and LSTM for image captioning
class CNNtoRNN(nn.Module):
def __init__(self, embed_size, hidden_size, vocab_size, num_layers=1, drop_prob=0.5, train_resnet=False):
"""
Initialize the CNNtoRNN model with specified sizes and parameters.
Args:
embed_size (int): Size of the word embedding.
hidden_size (int): Size of the hidden state of the LSTM.
vocab_size (int): Size of the vocabulary.
num_layers (int): Number of layers in the LSTM (default: 1).
drop_prob (float): Dropout probability (default: 0.5).
train_resnet (bool): Whether to train the ResNet backbone or not (default: False).
"""
super().__init__()
# Encoder (ResNet)
self.encoder = ResNet(embed_size, train_resnet)
# Decoder (LSTM)
self.decoder = LSTM(embed_size, hidden_size, vocab_size, num_layers, drop_prob)
def forward(self, images, captions):
"""
Forward pass of the CNNtoRNN model.
Args:
images (tensor): Input images tensor.
captions (tensor): Captions tensor.
Returns:
outputs (tensor): Output tensor.
"""
# Pass the images through the encoder (ResNet) to get features
features = self.encoder(images)
# Pass the features and captions through the decoder (LSTM) to get outputs
outputs = self.decoder(features, captions)
return outputs
"""### **Train the Model**"""
# Check if a CUDA-enabled GPU is available
# If available, set the device to "cuda" for GPU computations
# If not available, set the device to "cpu" for CPU computations
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
# Hyperparameters for the model
embed_size = 128 # Size of the word embedding
hidden_size = 256 # Size of the hidden state in the LSTM
vocab_size = len(train_dataset.vocab) # Size of the vocabulary
num_layers = 1 # Number of layers in the LSTM
learning_rate = 3e-4 # Learning rate for the optimizer
# Initialize the model, loss function, and optimizer
model = CNNtoRNN(embed_size, hidden_size, vocab_size, num_layers, train_resnet=False).to(device)
criterion = nn.CrossEntropyLoss(ignore_index=train_dataset.vocab.stoi["<PAD>"])
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# Set the number of training epochs
num_epochs = 100
# Create an empty list to store the training loss
train_loss = []
# Training loop
for epoch in range(num_epochs):
running_loss = 0
# Iterate over the training data loader
for idx, (image, captions) in enumerate(iter(train_loader)):
# Move the image and captions to the specified device
image, captions = image.to(device), captions.to(device)
# Set the model to train mode
model.train()
# Zero the gradients in the optimizer
optimizer.zero_grad()
# Feed forward
outputs = model(image, captions)
# Calculate the batch loss
loss = criterion(outputs.view(-1, vocab_size), captions.view(-1))
# Backward pass
loss.backward()
# Update the parameters in the optimizer
optimizer.step()
# Accumulate the running loss
running_loss += loss.item()
# Calculate the average loss for the epoch
average_loss = running_loss / (idx + 1)
# Print the epoch number and the average loss
print(f'Epoch: {epoch+1} - Train Loss: {average_loss}')
# Append the average loss to the train_loss list
train_loss.append(average_loss)
# Save the model after each epoch
torch.save(model.cpu().state_dict(), 'Model.pth')
# Move the model back to the specified device
model.cuda()
import matplotlib.pyplot as plt
# Set the figure size and dpi for better quality
plt.figure(figsize=(8, 6), dpi=80)
# Plot the training loss
plt.plot(train_loss, label='Training Loss')
# Set the plot title and axis labels
plt.title("Training Loss per Epoch")
plt.xlabel("Epoch")
plt.ylabel("Loss")
# Customize the grid and ticks
plt.grid(True, linestyle='--', linewidth=0.5)
plt.xticks(range(len(train_loss)))
plt.yticks()
# Add a legend
plt.legend()
# Save the plot as a PDF file
plt.savefig("loss_plot.pdf", format='pdf', bbox_inches='tight')
# Show the plot
plt.show()
import matplotlib.pyplot as plt
# Set the figure size and dpi for better quality
plt.figure(figsize=(8, 6), dpi=80)
# Plot the training loss
plt.plot(train_loss, label='Training Loss')
# Set the plot title and axis labels
plt.title("Training Loss per Epoch")
plt.xlabel("Epoch")
plt.ylabel("Loss")
# Customize the grid and ticks
plt.grid(True, linestyle='--', linewidth=0.5)
plt.xticks(range(0, len(train_loss), 5)) # Label every 5th epoch
plt.yticks()
# Add a legend
plt.legend()
# Save the plot as a PDF file
plt.savefig("loss_plot.pdf", format='pdf', bbox_inches='tight')
# Show the plot
plt.show()
"""## **Test**
### **Generate test data loaders and Test the Model**
"""
import matplotlib.pyplot as plt
def show_image_with_captions(image, predicted_caption, real_caption):
"""Display an image with predicted and real captions."""
# Denormalize the image tensor
image[0] = image[0] * 0.229
image[1] = image[1] * 0.224
image[2] = image[2] * 0.225
image[0] += 0.485
image[1] += 0.456
image[2] += 0.406
# Convert the image tensor to a numpy array and transpose the dimensions
image = image.numpy().transpose((1, 2, 0))
# Display the image
plt.imshow(image)
# Add predicted caption box
plt.text(
0, -20, predicted_caption, color='white', backgroundcolor='blue',
fontsize=12, verticalalignment='top', bbox=dict(facecolor='blue', alpha=0.8, edgecolor='white', pad=5)
)
# Add real caption box
plt.text(
0, -2, real_caption, color='black', backgroundcolor='green',
fontsize=12, verticalalignment='top', bbox=dict(facecolor='green', alpha=0.8, edgecolor='white', pad=5)
)
plt.axis('off')
plt.tight_layout()
# Define the test data transformations
test_transforms = T.Compose([
T.Resize((224, 224)), # Resize the images to the specified size
T.ToTensor(), # Convert the images to tensors
T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) # Normalize the image tensors
])
# Create the test dataset
test_dataset = FlickrDataset(
root_dir="Images", # Root directory of the dataset
caption_file="captions.txt", # File containing the captions
transform=test_transforms, # Apply the specified transformations to the images
frequency_threshold=1, # Frequency threshold for filtering captions
data_type='test' # Specify the type of data (in this case, 'test')
)
# Create the test data loader
test_loader = DataLoader(
dataset=test_dataset, # Use the created test dataset
batch_size=BATCH_SIZE, # Number of samples per batch
num_workers=NUM_WORKERS, # Number of worker threads for data loading
shuffle=True, # Shuffle the data for each epoch
collate_fn=Apppadd(pad_idx=pad_idx, batch_first=True) # Function to collate and preprocess the data
)
# Get a batch of images and captions from the test loader
images, captions = next(iter(test_loader))
# Iterate over a single image and its captions
for i in range(1):
# Set the model to evaluation mode
model.eval()
# Get a single test image and create a clone
test_image = torch.clone(images)[i].unsqueeze(0)
# Disable gradient calculation during inference
with torch.no_grad():
# Encode the test image using the model's encoder
features = model.encoder(test_image[0:1].to(device))
# Generate captions for the test image using the model's decoder
predicted_captions = model.decoder.generate_caption(features.unsqueeze(0), vocab=train_dataset.vocab)
# Get the ground truth caption for the test image
cap = torch.clone(captions)[i]
caption_label = [test_dataset.vocab.itos[token] for token in cap.tolist()]
# Find the index of the end-of-sequence token '<EOS>' in the caption
eos_index = caption_label.index('<EOS>')
# Extract the caption tokens from the start to the '<EOS>' token
caption_label = caption_label[1:eos_index]
# Convert the caption tokens to a string
caption_label = ' '.join(caption_label)
# Create the predicted caption string with proper formatting
predicted_caption = "Predicted Caption: " + ' '.join(predicted_captions[1:len(predicted_captions)-1])
# Create the actual caption string with proper formatting
real_caption = "Actual Caption: " + caption_label
# Display the image with the predicted and real captions
show_image_with_captions(test_image[0], predicted_caption, real_caption)
# Save the plot as a PDF file
plt.savefig("testimagecaptions11.pdf", format='pdf', bbox_inches='tight')
import matplotlib.pyplot as plt
def show_image_with_captions(image, predicted_caption, real_caption):
"""Display an image with predicted and real captions."""
# Denormalize the image tensor
image[0] = image[0] * 0.229
image[1] = image[1] * 0.224
image[2] = image[2] * 0.225
image[0] += 0.485
image[1] += 0.456
image[2] += 0.406
# Convert the image tensor to a numpy array and transpose the dimensions
image = image.numpy().transpose((1, 2, 0))
# Display the image
plt.imshow(image)
# Add predicted caption box
plt.text(
0, -20, predicted_caption, color='white', backgroundcolor='blue',
fontsize=12, verticalalignment='top', bbox=dict(facecolor='blue', alpha=0.8, edgecolor='white', pad=5)
)
# Add real caption box
plt.text(
0, -2, real_caption, color='black', backgroundcolor='green',
fontsize=12, verticalalignment='top', bbox=dict(facecolor='green', alpha=0.8, edgecolor='white', pad=5)
)
plt.axis('off')
plt.tight_layout()
# Define the test data transformations
test_transforms = T.Compose([
T.Resize((224, 224)), # Resize the images to the specified size
T.ToTensor(), # Convert the images to tensors
T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) # Normalize the image tensors
])
# Create the test dataset
test_dataset = FlickrDataset(
root_dir="Images", # Root directory of the dataset
caption_file="captions.txt", # File containing the captions
transform=test_transforms, # Apply the specified transformations to the images
frequency_threshold=1, # Frequency threshold for filtering captions
data_type='test' # Specify the type of data (in this case, 'test')
)
# Create the test data loader
test_loader = DataLoader(
dataset=test_dataset, # Use the created test dataset
batch_size=BATCH_SIZE, # Number of samples per batch
num_workers=NUM_WORKERS, # Number of worker threads for data loading
shuffle=True, # Shuffle the data for each epoch
collate_fn=Apppadd(pad_idx=pad_idx, batch_first=True) # Function to collate and preprocess the data
)
# Get a batch of images and captions from the test loader
images, captions = next(iter(test_loader))
# Iterate over a single image and its captions
for i in range(1):
# Set the model to evaluation mode
model.eval()
# Get a single test image and create a clone
test_image = torch.clone(images)[i].unsqueeze(0)
# Disable gradient calculation during inference
with torch.no_grad():
# Encode the test image using the model's encoder
features = model.encoder(test_image[0:1].to(device))
# Generate captions for the test image using the model's decoder
predicted_captions = model.decoder.generate_caption(features.unsqueeze(0), vocab=train_dataset.vocab)
# Get the ground truth caption for the test image
cap = torch.clone(captions)[i]
caption_label = [test_dataset.vocab.itos[token] for token in cap.tolist()]
# Find the index of the end-of-sequence token '<EOS>' in the caption
eos_index = caption_label.index('<EOS>')
# Extract the caption tokens from the start to the '<EOS>' token
caption_label = caption_label[1:eos_index]
# Convert the caption tokens to a string
caption_label = ' '.join(caption_label)
# Create the predicted caption string with proper formatting
predicted_caption = "Predicted Caption: " + ' '.join(predicted_captions[1:len(predicted_captions)-1])
# Create the actual caption string with proper formatting
real_caption = "Actual Caption: " + caption_label
# Display the image with the predicted and real captions
show_image_with_captions(test_image[0], predicted_caption, real_caption)
# Save the plot as a PDF file
plt.savefig("testimagecaptions12.pdf", format='pdf', bbox_inches='tight')