From a7adc8cbadfa6613c6fbfe98e4c19d31ef9b963b Mon Sep 17 00:00:00 2001 From: Mahrud Sayrafi Date: Sat, 16 Nov 2024 02:10:14 +0100 Subject: [PATCH] fixed the documentation of vertices and latticePoints --- .../NormalToricVarieties/DivisorsDocumentation.m2 | 10 ++++------ 1 file changed, 4 insertions(+), 6 deletions(-) diff --git a/M2/Macaulay2/packages/NormalToricVarieties/DivisorsDocumentation.m2 b/M2/Macaulay2/packages/NormalToricVarieties/DivisorsDocumentation.m2 index 9a6677f86b..db182a6241 100644 --- a/M2/Macaulay2/packages/NormalToricVarieties/DivisorsDocumentation.m2 +++ b/M2/Macaulay2/packages/NormalToricVarieties/DivisorsDocumentation.m2 @@ -2018,8 +2018,7 @@ doc /// Cartier divisor is a lattice polytope. Given a torus-invariant Cartier divisor on a normal toric variety, this method returns an integer matrix whose columns correspond to the vertices of the - associated lattice polytope. For a non-effective Cartier divisor, - this methods returns @TO null@. When the divisor is ample, + associated lattice polytope. When the divisor is ample, the normal fan the corresponding polytope equals the fan associated to the normal toric variety. Text @@ -2027,7 +2026,7 @@ doc /// a point, or a triangle. Example PP2 = toricProjectiveSpace 2; - assert (null === vertices (-PP2_0)) + assert (vertices (-PP2_0) == 0) vertices (0*PP2_0) assert isAmple PP2_0 V1 = vertices (PP2_0) @@ -2082,14 +2081,13 @@ doc /// Cartier divisor is a lattice polytope. Given a torus-invariant Cartier divisor on a normal toric variety, this method returns an integer matrix whose columns correspond to the lattices points - contained in the associated polytope. For a non-effective Cartier - divisor, this method returns @TO null@. + contained in the associated polytope. Text On the projective plane, the associate polytope is either empty, a point, or a triangle. Example PP2 = toricProjectiveSpace 2; - assert (null === vertices (-PP2_0)) + assert (vertices (-PP2_0) == 0) latticePoints (0*PP2_0) assert isAmple PP2_0 V1 = latticePoints (PP2_0)