-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
74 lines (64 loc) · 3.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# -*- coding: utf-8 -*-
"""
@Time: 2023/4/27 11:16
@Author: Marigold
@Version: 0.0.0
@Description:the entrance file of deep graph clustering
@WeChat Account: Marigold
"""
import torch
import importlib
from utils.options import parser
from dataset import dataset_info
from utils import logger, time_manager, path_manager, plot, rand
from utils.load_data import load_data
from utils.utils import cal_mean_std, record_metrics
if __name__ == "__main__":
args = parser.parse_args()
# setup random seed to ensure that the experiment can be reproduced
rand.setup_seed(args.seed)
args.device = "cuda" if torch.cuda.is_available() else "cpu"
# get the information of dataset
args = dataset_info.get_dataset_info(args)
# get the relative path or absolute path
args = path_manager.get_path(args)
# Configuration of logger and timer module.
# The logger print the training log to the specified file and the timer record training's time assuming.
logger = logger.MyLogger(args.model_name, log_file_path=f"{args.log_save_path}{time_manager.get_format_time()}.log")
logger.info("The key points of this experiment: " + args.desc)
logger.info(f"random seed: {args.seed}")
timer = time_manager.MyTime()
# Load data, including features, label, adjacency matrix.
data = load_data(args.k, args.dataset_path, args.dataset_name,
feature_type=args.feature_type, label_type=args.label_type, adj_type=args.adj_type,
adj_loop=args.adj_loop, adj_norm=args.adj_norm, adj_symmetric=args.adj_symmetric,
t=args.t)
# Auto import the training module of the model you specified.
model_train = importlib.import_module(f"model.{args.model_name}.train")
train = getattr(model_train, "train")
# Training
acc_list, nmi_list, ari_list, f1_list = [], [], [], []
# repeat args.loops rounds
for i in range(args.loops):
logger.info(f"{'=' * 20}Training loop No.{i + 1}{'=' * 20}")
timer.start()
# call the training function of your specified model
result = train(args, data, logger)
seconds, minutes = timer.stop()
logger.info("Time consuming: {}s or {}m".format(seconds, minutes))
# record the max value of each loop
acc_list, nmi_list, ari_list, f1_list = record_metrics(acc_list, nmi_list, ari_list, f1_list,
result.max_acc_corresponding_metrics)
# draw the clustering image or embedding heatmap
if args.plot_clustering_tsne:
plot.plot_clustering_tsne(args, result.embedding, data.label,
logger, desc=f"{i}", title=None, axis_show=False)
if args.plot_embedding_heatmap:
plot.plot_embedding_heatmap(args, torch.matmul(result.embedding, result.embedding.t()),
logger, desc=f"{i}", title=None,
axis_show=False, color_bar_show=True)
logger.info(str(args))
logger.info("Total loops: {}".format(args.loops))
logger.info("Mean value:")
logger.info(cal_mean_std(acc_list, nmi_list, ari_list, f1_list))
logger.info("Training over! Punch out!")