You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
INFO 12-24 20:14:05 [cache_tensor_manager.py:17] USE_GPU_TENSOR_CACHE is On
ERROR 12-24 20:14:05 [_custom_ops.py:51] vllm or lightllm_kernel is not installed, you can't use custom ops
INFO 12-24 20:14:05 [communication_op.py:41] vllm or lightllm_kernel is not installed, you can't use custom allreduce
/root/autodl-tmp/lightllm/lightllm/server/api_server.py:356: DeprecationWarning:
on_event is deprecated, use lifespan event handlers instead.
Read more about it in the
[FastAPI docs for Lifespan Events](https://fastapi.tiangolo.com/advanced/events/).
@app.on_event("shutdown")
/root/autodl-tmp/lightllm/lightllm/server/api_server.py:375: DeprecationWarning:
on_event is deprecated, use lifespan event handlers instead.
Read more about it in the
[FastAPI docs for Lifespan Events](https://fastapi.tiangolo.com/advanced/events/).
@app.on_event("startup")
WARNING 12-24 20:14:06 [tokenizer.py:66] load fast tokenizer fail: Descriptors cannot not be created directly.
WARNING 12-24 20:14:06 [tokenizer.py:66] If this call came from a _pb2.py file, your generated code is out of date and must be regenerated with protoc >= 3.19.0.
WARNING 12-24 20:14:06 [tokenizer.py:66] If you cannot immediately regenerate your protos, some other possible workarounds are:
WARNING 12-24 20:14:06 [tokenizer.py:66] 1. Downgrade the protobuf package to 3.20.x or lower.
WARNING 12-24 20:14:06 [tokenizer.py:66] 2. Set PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python (but this will use pure-Python parsing and will be much slower).
WARNING 12-24 20:14:06 [tokenizer.py:66]
WARNING 12-24 20:14:06 [tokenizer.py:66] More information: https://developers.google.com/protocol-buffers/docs/news/2022-05-06#python-updates
Traceback (most recent call last):
File "/root/autodl-tmp/lightllm/lightllm/server/tokenizer.py", line 62, in get_tokenizer
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, trust_remote_code=trust_remote_code, *args, **kwargs)
File "/root/miniconda3/envs/lightllm/lib/python3.9/site-packages/transformers/models/auto/tokenization_auto.py", line 907, in from_pretrained
return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
File "/root/miniconda3/envs/lightllm/lib/python3.9/site-packages/transformers/tokenization_utils_base.py", line 2208, in from_pretrained
return cls._from_pretrained(
File "/root/miniconda3/envs/lightllm/lib/python3.9/site-packages/transformers/tokenization_utils_base.py", line 2442, in _from_pretrained
tokenizer = cls(*init_inputs, **init_kwargs)
File "/root/miniconda3/envs/lightllm/lib/python3.9/site-packages/transformers/models/llama/tokenization_llama.py", line 171, in init
self.sp_model = self.get_spm_processor(kwargs.pop("from_slow", False))
File "/root/miniconda3/envs/lightllm/lib/python3.9/site-packages/transformers/models/llama/tokenization_llama.py", line 203, in get_spm_processor
model_pb2 = import_protobuf(f"The new behaviour of {self.class.name} (with self.legacy = False)")
File "/root/miniconda3/envs/lightllm/lib/python3.9/site-packages/transformers/convert_slow_tokenizer.py", line 38, in import_protobuf
from sentencepiece import sentencepiece_model_pb2
File "/root/miniconda3/envs/lightllm/lib/python3.9/site-packages/sentencepiece/sentencepiece_model_pb2.py", line 34, in
_descriptor.EnumValueDescriptor(
File "/root/miniconda3/envs/lightllm/lib/python3.9/site-packages/google/protobuf/descriptor.py", line 796, in new
_message.Message._CheckCalledFromGeneratedFile()
TypeError: Descriptors cannot not be created directly.
If this call came from a _pb2.py file, your generated code is out of date and must be regenerated with protoc >= 3.19.0.
If you cannot immediately regenerate your protos, some other possible workarounds are:
Downgrade the protobuf package to 3.20.x or lower.
Set PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python (but this will use pure-Python parsing and will be much slower).
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/root/miniconda3/envs/lightllm/lib/python3.9/runpy.py", line 197, in _run_module_as_main
return _run_code(code, main_globals, None,
File "/root/miniconda3/envs/lightllm/lib/python3.9/runpy.py", line 87, in _run_code
exec(code, run_globals)
File "/root/autodl-tmp/lightllm/lightllm/server/api_server.py", line 394, in
init_tokenizer(args) # for openai api
File "/root/autodl-tmp/lightllm/lightllm/server/build_prompt.py", line 8, in init_tokenizer
tokenizer = get_tokenizer(args.model_dir, args.tokenizer_mode, trust_remote_code=args.trust_remote_code)
File "/root/autodl-tmp/lightllm/lightllm/server/tokenizer.py", line 68, in get_tokenizer
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, trust_remote_code=trust_remote_code, *args, **kwargs)
File "/root/miniconda3/envs/lightllm/lib/python3.9/site-packages/transformers/models/auto/tokenization_auto.py", line 907, in from_pretrained
return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
File "/root/miniconda3/envs/lightllm/lib/python3.9/site-packages/transformers/tokenization_utils_base.py", line 2208, in from_pretrained
return cls._from_pretrained(
File "/root/miniconda3/envs/lightllm/lib/python3.9/site-packages/transformers/tokenization_utils_base.py", line 2442, in _from_pretrained
tokenizer = cls(*init_inputs, **init_kwargs)
File "/root/miniconda3/envs/lightllm/lib/python3.9/site-packages/transformers/models/llama/tokenization_llama.py", line 171, in init
self.sp_model = self.get_spm_processor(kwargs.pop("from_slow", False))
File "/root/miniconda3/envs/lightllm/lib/python3.9/site-packages/transformers/models/llama/tokenization_llama.py", line 203, in get_spm_processor
model_pb2 = import_protobuf(f"The new behaviour of {self.class.name} (with self.legacy = False)")
File "/root/miniconda3/envs/lightllm/lib/python3.9/site-packages/transformers/convert_slow_tokenizer.py", line 38, in import_protobuf
from sentencepiece import sentencepiece_model_pb2
File "/root/miniconda3/envs/lightllm/lib/python3.9/site-packages/sentencepiece/sentencepiece_model_pb2.py", line 16, in
DESCRIPTOR = _descriptor.FileDescriptor(
File "/root/miniconda3/envs/lightllm/lib/python3.9/site-packages/google/protobuf/descriptor.py", line 1066, in new
return _message.default_pool.AddSerializedFile(serialized_pb)
TypeError: Couldn't build proto file into descriptor pool: duplicate file name sentencepiece_model.proto
The text was updated successfully, but these errors were encountered:
i strictly follow the installation docs (https://lightllm-cn.readthedocs.io/en/latest/getting_started/installation.html#installation).
and my gpu is a800.
error:
python -m lightllm.server.api_server --model_dir ~/autodl-pub/models/llama-7b/
INFO 12-24 20:14:05 [cache_tensor_manager.py:17] USE_GPU_TENSOR_CACHE is On
ERROR 12-24 20:14:05 [_custom_ops.py:51] vllm or lightllm_kernel is not installed, you can't use custom ops
INFO 12-24 20:14:05 [communication_op.py:41] vllm or lightllm_kernel is not installed, you can't use custom allreduce
/root/autodl-tmp/lightllm/lightllm/server/api_server.py:356: DeprecationWarning:
on_event is deprecated, use lifespan event handlers instead.
@app.on_event("shutdown")
/root/autodl-tmp/lightllm/lightllm/server/api_server.py:375: DeprecationWarning:
on_event is deprecated, use lifespan event handlers instead.
@app.on_event("startup")
WARNING 12-24 20:14:06 [tokenizer.py:66] load fast tokenizer fail: Descriptors cannot not be created directly.
WARNING 12-24 20:14:06 [tokenizer.py:66] If this call came from a _pb2.py file, your generated code is out of date and must be regenerated with protoc >= 3.19.0.
WARNING 12-24 20:14:06 [tokenizer.py:66] If you cannot immediately regenerate your protos, some other possible workarounds are:
WARNING 12-24 20:14:06 [tokenizer.py:66] 1. Downgrade the protobuf package to 3.20.x or lower.
WARNING 12-24 20:14:06 [tokenizer.py:66] 2. Set PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python (but this will use pure-Python parsing and will be much slower).
WARNING 12-24 20:14:06 [tokenizer.py:66]
WARNING 12-24 20:14:06 [tokenizer.py:66] More information: https://developers.google.com/protocol-buffers/docs/news/2022-05-06#python-updates
Traceback (most recent call last):
File "/root/autodl-tmp/lightllm/lightllm/server/tokenizer.py", line 62, in get_tokenizer
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, trust_remote_code=trust_remote_code, *args, **kwargs)
File "/root/miniconda3/envs/lightllm/lib/python3.9/site-packages/transformers/models/auto/tokenization_auto.py", line 907, in from_pretrained
return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
File "/root/miniconda3/envs/lightllm/lib/python3.9/site-packages/transformers/tokenization_utils_base.py", line 2208, in from_pretrained
return cls._from_pretrained(
File "/root/miniconda3/envs/lightllm/lib/python3.9/site-packages/transformers/tokenization_utils_base.py", line 2442, in _from_pretrained
tokenizer = cls(*init_inputs, **init_kwargs)
File "/root/miniconda3/envs/lightllm/lib/python3.9/site-packages/transformers/models/llama/tokenization_llama.py", line 171, in init
self.sp_model = self.get_spm_processor(kwargs.pop("from_slow", False))
File "/root/miniconda3/envs/lightllm/lib/python3.9/site-packages/transformers/models/llama/tokenization_llama.py", line 203, in get_spm_processor
model_pb2 = import_protobuf(f"The new behaviour of {self.class.name} (with
self.legacy = False
)")File "/root/miniconda3/envs/lightllm/lib/python3.9/site-packages/transformers/convert_slow_tokenizer.py", line 38, in import_protobuf
from sentencepiece import sentencepiece_model_pb2
File "/root/miniconda3/envs/lightllm/lib/python3.9/site-packages/sentencepiece/sentencepiece_model_pb2.py", line 34, in
_descriptor.EnumValueDescriptor(
File "/root/miniconda3/envs/lightllm/lib/python3.9/site-packages/google/protobuf/descriptor.py", line 796, in new
_message.Message._CheckCalledFromGeneratedFile()
TypeError: Descriptors cannot not be created directly.
If this call came from a _pb2.py file, your generated code is out of date and must be regenerated with protoc >= 3.19.0.
If you cannot immediately regenerate your protos, some other possible workarounds are:
More information: https://developers.google.com/protocol-buffers/docs/news/2022-05-06#python-updates
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/root/miniconda3/envs/lightllm/lib/python3.9/runpy.py", line 197, in _run_module_as_main
return _run_code(code, main_globals, None,
File "/root/miniconda3/envs/lightllm/lib/python3.9/runpy.py", line 87, in _run_code
exec(code, run_globals)
File "/root/autodl-tmp/lightllm/lightllm/server/api_server.py", line 394, in
init_tokenizer(args) # for openai api
File "/root/autodl-tmp/lightllm/lightllm/server/build_prompt.py", line 8, in init_tokenizer
tokenizer = get_tokenizer(args.model_dir, args.tokenizer_mode, trust_remote_code=args.trust_remote_code)
File "/root/autodl-tmp/lightllm/lightllm/server/tokenizer.py", line 68, in get_tokenizer
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, trust_remote_code=trust_remote_code, *args, **kwargs)
File "/root/miniconda3/envs/lightllm/lib/python3.9/site-packages/transformers/models/auto/tokenization_auto.py", line 907, in from_pretrained
return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
File "/root/miniconda3/envs/lightllm/lib/python3.9/site-packages/transformers/tokenization_utils_base.py", line 2208, in from_pretrained
return cls._from_pretrained(
File "/root/miniconda3/envs/lightllm/lib/python3.9/site-packages/transformers/tokenization_utils_base.py", line 2442, in _from_pretrained
tokenizer = cls(*init_inputs, **init_kwargs)
File "/root/miniconda3/envs/lightllm/lib/python3.9/site-packages/transformers/models/llama/tokenization_llama.py", line 171, in init
self.sp_model = self.get_spm_processor(kwargs.pop("from_slow", False))
File "/root/miniconda3/envs/lightllm/lib/python3.9/site-packages/transformers/models/llama/tokenization_llama.py", line 203, in get_spm_processor
model_pb2 = import_protobuf(f"The new behaviour of {self.class.name} (with
self.legacy = False
)")File "/root/miniconda3/envs/lightllm/lib/python3.9/site-packages/transformers/convert_slow_tokenizer.py", line 38, in import_protobuf
from sentencepiece import sentencepiece_model_pb2
File "/root/miniconda3/envs/lightllm/lib/python3.9/site-packages/sentencepiece/sentencepiece_model_pb2.py", line 16, in
DESCRIPTOR = _descriptor.FileDescriptor(
File "/root/miniconda3/envs/lightllm/lib/python3.9/site-packages/google/protobuf/descriptor.py", line 1066, in new
return _message.default_pool.AddSerializedFile(serialized_pb)
TypeError: Couldn't build proto file into descriptor pool: duplicate file name sentencepiece_model.proto
The text was updated successfully, but these errors were encountered: