forked from whatsdis/pluribus
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpluribus.py
848 lines (713 loc) · 27.7 KB
/
pluribus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
from treys import Card as Card # treys is a deuces version for Python 3, install it with "pip install treys"
from treys import Evaluator
from functools import reduce
import math
from time import perf_counter
import random
from colorama import init, Fore, Style
STARTING_STACK = 10000
STRATEGY_INTERVAL = 1000 #10000 for pluribus
PRUNE_THRESHOLD = 200
LCFR_THRESHOLD = 400
DISCOUNT_INTERVAL = 2 #10 in pluribus
PLAYERS = [0, 1]
C = -300000000
BETTING_ROUND_PREFLOP = 0
BETTING_ROUND_FLOP = 1
BETTING_ROUND_TURN = 2
BETTING_ROUND_RIVER = 3
BETTING_OVER = 4
#for starters, play with 20 cards.
ranks = ["6", "7", "8", "9", "T", "J", "Q", "K", "A"]
ALL_ACTIONS = ["fold", "call", "check", "none", "bet"] #bet2
treeMap = {}
init() # initialization for colorama to color console output (especially under Windows with console that support ANSI codes like native win command prompt)
def nextRound(h):
h.bettingRound += 1
h.currentPlayer = 0
cards = []
rounds = ["Preflop", "Flop", "Turn", "River"]
if (h.bettingRound == BETTING_ROUND_FLOP):
#draw flop
cards = [h.deck.pop(), h.deck.pop(), h.deck.pop()]
elif (h.bettingRound == BETTING_ROUND_TURN):
#draw turn or river
cards = [h.deck.pop()]
elif (h.bettingRound == BETTING_ROUND_RIVER):
cards = [h.deck.pop()]
h.board = h.board + cards
h.chips = h.chips + reduce(lambda a,b : a+b, h.pBet)
h.pBet = list(map(lambda p: 0, PLAYERS))
if (h.bettingRound < BETTING_OVER):
h.log = h.log + [rounds[h.bettingRound] + " comes " + ",".join(cards)]
return h
def allOthersFolded(h):
return len([x for x in filter( lambda p : not p, h.pFolded)]) == 1
def isTerminal(h):
if allOthersFolded(h):
return True
elif h.bettingRound == BETTING_OVER:
return True
else:
return False
def haveShowdown(h):
unfoldedMPIP = filter(lambda p,i : not h.pFolded[i],h.pMPIP)
return (
(len(h.board) == 5) &
(len([x for x in filter( lambda p : not p, h.pFolded)]) >= 2) &
(len(h.river.split(",")) >= len(PLAYERS))
)
def getUtility(h,p):
youWon = h.winner == p
if youWon:
return h.chips
else:
mpip = h.pMPIP[p]
return -1 * mpip
def calculateWinner(h):
board = h.board
showdownWinner = ""
gotToShowdown = haveShowdown(h)
showdown = ""
whoDidnt = ""
if gotToShowdown:
evaluator = Evaluator()
trBoard = list(map(lambda b : Card.new(b), board))
trCards = []
for i in range (len(h.pCards)):
trCards.append(list(map(lambda c : Card.new(c), h.pCards[i])))
playersInHand = list(map(lambda p : not p, h.pFolded))
scores = list(map(lambda cards : evaluator.evaluate(trBoard, cards), filter(lambda cards : playersInHand, trCards)))
showdown = list(map(lambda s : evaluator.class_to_string(evaluator.get_rank_class(s)), scores))
showdownWinner = scores.index(min(scores)) #for now, ties are not explored
showdownWinnerCards = showdown[showdownWinner]
h.log += ([
"Player " + str(showdownWinner) + " wins with " + showdownWinnerCards + ": " + h.pCards[showdownWinner].__str__()
],)
else:
whoDidnt = h.pFolded.index(False)
h.log += ([
"Player " + str(whoDidnt) + " wins because everyone else folded"
],)
if showdownWinner != '':
h.winner = showdownWinner
else:
h.winner = whoDidnt
h.showdown = list(map(lambda s, c : s + ": " + c.__str__(), showdown, h.pCards))
return h
def inHand(h,p):
playerFolded = h.pFolded
return not playerFolded[h.currentPlayer]
def needsChanceNode(h):
# since last chancenode , more than or equal to {PLAYERS.length} actions were taken
# and all players left ( not action none, not action fold) have equal betsizes
lastBettingRoundActions=""
if h.bettingRound == BETTING_ROUND_RIVER:
lastBettingRoundActions = h.river
if h.bettingRound == BETTING_ROUND_TURN:
lastBettingRoundActions = h.turn
if h.bettingRound == BETTING_ROUND_FLOP:
lastBettingRoundActions = h.flop
if h.bettingRound == BETTING_ROUND_PREFLOP:
lastBettingRoundActions = h.preflop
everyoneDidAction = len(lastBettingRoundActions.split(",")) > len(PLAYERS)
playersLeft = list(map(lambda a : not a, h.pFolded))
playerBets = list(filter(lambda betSize : True in playersLeft, h.pBet))
playerChips = list(filter(lambda stackSize : True in playersLeft, h.pChips))
everyoneAllIn = all(chips <=0 for chips in playerChips)
equalBets = allEqual(playerBets)
needsChanceCard = (everyoneDidAction | everyoneAllIn) & equalBets
# print(
# "needschancenoce",
# needsChanceCard,
# "lastBettingRoundActions",
# lastBettingRoundActions,
# "everyoneDidAction",
# everyoneDidAction,
# "playersLeft",
# playersLeft,
# "playerBets",
# playerBets,
# "equalBets",
# equalBets
# )
return needsChanceCard
def getCurrentPlayerFromInfoSet(infoSet):
currentPlayer = filter(
lambda a : len(ALL_ACTIONS.contains(a)) % len(PLAYER)
)
return currentPlayer
def getActionsInfoSet(h,p):
potSize = reduce(lambda a,b : a+b, h.pMPIP)
totalChips = len(PLAYERS) * STARTING_STACK
potSizeBuckets = math.floor((potSize / totalChips) * 10) #expect to be 0-9, linear to potSize/totalChips ratio
playersRemain = reduce(lambda a,b : a+b, list(map(lambda folded : '0' if folded else '1', h.pFolded))) # expect to be 010101 in order of position so 2^players combinations
allBetsSize = reduce(lambda a,b : a+b, h.pBet)
potSizeWithBets = potSize + allBetsSize
myBet = h.pBet[p]
biggestBet = max(h.pBet)
toCall = biggestBet - myBet
potOdds = toCall / potSizeWithBets
potOddsBuckets = math.floor(potOdds * 10) #expect it to be 0-9
positions = list(map(lambda i : len(PLAYERS)-i, PLAYERS)) #for six players, expect to be [5,4,3,2,1,0]
myPosition = positions[p] #0 is sb, players.length is dealer. so the higher the better. however, sometimes, you're in position depending on other players folded. this has to be taken into account. Therefore, 0 should be in position. then substract players that have folded
p1 = p + 1
while (p1 < len(PLAYERS)):
if h.pFolded[p1]:
myPosition -= 1
p1 += 1
#expect myposition to be 0 if in position, 1 if almost in position, etc. so 0-8 for 9 players
bettingRound = h.bettingRound
actionsString = str(bettingRound) + str(myPosition) + str(potOddsBuckets) + str(potSizeBuckets) + "," + playersRemain
# expect it to be something like 1023,000111
return actionsString
def getHandStrength(ourCards, board):
#should return number indicating how strong your hand is. should return about 30 combinations
STRAIGHT_OR_ROYAL_FLUSH = 1
FOUR_OF_A_KIND = 2
FULL_HOUSE_HIGH = 3
FULL_HOUSE_MID = 4
FULL_HOUSE_LOW = 5
FLUSH_HIGH = 6
FLUSH_MID = 7
FLUSH_LOW = 8
STRAIGHT_HIGH = 9 #678[9T]
STRAIGHT_MID = 10 #[5]678[9]
STRAIGHT_LOW = 11 #[56]789
THREE_OF_A_KIND_HIGH = 12
THREE_OF_A_KIND_MID = 13
THREE_OF_A_KIND_LOW = 14
TWO_PAIR_HIGH_TOP_KICKER = 15
TWO_PAIR_HIGH_MID_KICKER = 16
TWO_PAIR_HIGH_LOW_KICKER = 17
TWO_PAIR_MID = 18
TWO_PAIR_LOW = 19
FLUSH_DRAW = 20
STRAIGHT_DRAW = 21
TOP_PAIR_TOP_KICKER = 22
TOP_PAIR_MID_KICKER = 23
TOP_PAIR_LOW_KICKER = 24
MID_PAIR = 25
LOW_PAIR = 26
HIGH_CARD_TOP = 27
HIGH_CARD_MID = 28
HIGH_CARD_LOW = 29
cards = ourCards + (board)
cardsWithoutSuit = list(map(lambda card : card[0], cards))
return math.ceil(HIGH_CARD_LOW * random.random()) #1-29
def getRanks(card):
if (card == "A"): return 14
if (card == "K"): return 13
if (card == "Q"): return 12
if (card == "J"): return 11
if (card == "T"): return 10
return int(card);
def getBoardStrength(cards):
cardsWithoutSuit = list(map(lambda card : card[0], cards))
cardCount = list(map(lambda rank : len([x for x in filter(lambda rank2 : rank2 == rank, cardsWithoutSuit)]), cardsWithoutSuit))
pairs = "X"
hasPair = len([x for x in filter(lambda c : c == 2, cardCount)])
hasTrips = len([x for x in filter(lambda c : c == 3, cardCount)])
hasQuads = len([x for x in filter(lambda c : c == 4, cardCount)])
if all(x == 1 for x in cardCount):
pairs = "0"
elif hasPair == 2:
pairs = "1"
elif hasPair == 4:
pairs = "2"
elif hasTrips == 3:
pairs = "3"
elif hasPair == 2 & hasTrips == 3:
pairs = "4"
elif hasQuads == 4:
pairs = "5"
#pairs 0,1,2,3,4,5 for no pair, one pair, two pair, trips, fullhouse, quads respectively.
cardSuits = list(map(lambda card : card[1], cards))
suitCount = list(map(lambda suit1 : len([x for x in filter(lambda suit2 : suit2 == suit1, cardSuits)]), cardSuits))
flushiness = "Y"
hasTwoSuits = len([x for x in filter(lambda s : s == 2, suitCount)])
hasThreeSuits = len([x for x in filter(lambda s : s == 3, suitCount)])
hasFourSuits = len([x for x in filter(lambda s : s == 4, suitCount)])
hasFlush = len([x for x in filter(lambda s : s == 5, suitCount)])
if all(amount == 1 for amount in suitCount):
flushiness = "0"
elif (hasTwoSuits == 2):
flushiness = "1"
elif (hasTwoSuits == 4):
flushiness = "2"
elif (hasThreeSuits == 3):
flushiness = "3"
elif hasFourSuits == 4:
flushiness = "4"
elif hasFlush == 5:
flushiness = "5"
#flushiness 0,1,2,3,4,5
cardsWithoutSuitWithoutPairs = list(dict.fromkeys(cardsWithoutSuit))
ranksWithoutSuitWithoutPairs = list(map(
lambda card : getRanks(card),
cardsWithoutSuitWithoutPairs
))
_sorted = sorted(ranksWithoutSuitWithoutPairs) #something like 8 10 12 or 8 10
def diff_result(rank, i):
try:
result = _sorted[i+1] - rank if _sorted[i+1] else None
return result
except IndexError:
pass
diff = list(filter(lambda diff : diff, map(
lambda rank,i : diff_result(rank, i),
_sorted, [index for index, value in enumerate(_sorted)]
))) #something like 1,1,1,1 for a straight
diffString = "".join(str(diff).strip('[]').replace(', ', ''))
straightness = "Z"
if (all(d == 1 for d in diff) & len(_sorted) == 5):
#straight on board
straightness = "5"
elif diffString.find("111") > -1:
#open ended on board
straightness = "4"
elif (diffString.find("112") > -1) | (diffString.find("121") > -1) | (diffString.find("211") > -1):
#gutter on board
straightness = "3"
elif (diffString.find("1") > -1) | (diffString.find("2") > -1):
# open ended or double gutter possible
straightness = "2"
elif diffString.find("3") > -1:
straightness = "1"
else:
straightness = "0"
#straightiness 0,1,2,3,4 for nothing possible, openended or gutter unlikely, open ended or (double)gutter possible, gutter on board, open ended on board, straight on board.
boardStrength = pairs + flushiness + straightness
print("cards", Fore.GREEN, cards, Style.RESET_ALL, "becomes ", boardStrength)
return boardStrength
#should return string indicating [pairs][flushyness][straightyness] like 000 for A5To for a total of 216 combinations
def getInformationSet(h,p):
actions = getActions(h)
infoSet = ""
actionsInfoSet = getActionsInfoSet(h,p)
if (h.bettingRound == BETTING_ROUND_PREFLOP):
card1 = h.pCards[p][0][0]
card2 = h.pCards[p][1][0]
first = card1 if card1 < card2 else card2
second = card2 if card1 < card2 else card1
cards = first + second + (
"s" if h.pCards[p][0][1] == h.pCards[p][1][1] else "o"
)
infoSet = cards + actionsInfoSet
else:
handStrength = getHandStrength(h.pCards[p],h.board)
boardStrength = getBoardStrength(h.board)
infoSet = str(handStrength) + boardStrength + actionsInfoSet
# print("infoset", infoSet)
try :
I = treeMap[infoSet]
# print("we found an I that already has been declared!", I)
except Exception as e :
#if undefined, create new and return that one
treeMap[infoSet] = {
'infoSet': infoSet,
'regretSum': tuple(list(map(lambda a : 0, actions))),
'strategy': tuple(list(map(lambda a : 1/len(actions), actions))),
'actionCounter': tuple(list(map(lambda a : 0, actions)))
}
I = treeMap[infoSet]
# print("infoSet", infoSet, "Found")
return I
"""
returns true if all values in the array are the same
@param {*} arr array
"""
def allEqual(arr):
return all(v == arr[0] for v in arr)
"""
get all actions that are currently possible
@param {*} h history
"""
def getActions(h):
playersLeft = list(map(lambda a : not a, h.pFolded))
betsAreEqual = allEqual(list(filter(
lambda p : True in playersLeft,
h.pBet
)))
highestBet = max(h.pBet)
currentBet = h.pBet[h.currentPlayer]
diff = highestBet - currentBet
hasChips = h.pChips[h.currentPlayer] > diff
hasFolded = h.pFolded[h.currentPlayer]
actions = []
if (hasFolded):
actions = ["none"]
else:
if betsAreEqual:
actions = ["check"]
if hasChips:
actions = actions + ["bet"] #bet2
else:
actions = ["fold", "call"]
if hasChips:
actions = actions + ["bet"] #bet2
return actions
def doAction(h,action,p):
ha = History(h)
ha.depth += 1
if ha.bettingRound == BETTING_ROUND_PREFLOP:
ha.preflop = ha.preflop + str(ha.currentPlayer) + action + ","
elif ha.bettingRound == BETTING_ROUND_FLOP:
ha.flop = ha.flop + str(ha.currentPlayer) + action + ","
elif ha.bettingRound == BETTING_ROUND_TURN:
ha.turn = ha.turn + str(ha.currentPlayer) + action + ","
elif ha.bettingRound == BETTING_ROUND_RIVER:
ha.river = ha.river + str(ha.currentPlayer) + action + ","
elif ha.bettingRound == BETTING_OVER:
ha.over = ha.over + str(ha.currentPlayer) + action + ","
ha.pLastAction[p] = action
#do stuff here
if action == "fold":
ha.pFolded[ha.currentPlayer] = True;
ha.log = ha.log + ["Player " + str(ha.currentPlayer) + " folds"];
elif action == "call":
#calls the highest bet
highestBet = max(ha.pBet);
myBet = ha.pBet[ha.currentPlayer];
diff = highestBet - myBet;
ha.pChips[ha.currentPlayer] = ha.pChips[ha.currentPlayer] - diff;
ha.pBet[ha.currentPlayer] = highestBet;
ha.pMPIP[ha.currentPlayer] = ha.pMPIP[ha.currentPlayer] + diff;
ha.log = ha.log + ["Player " + str(ha.currentPlayer) + " calls " + str(diff)];
elif action == "check":
ha.log = ha.log + ["Player " + str(ha.currentPlayer) + " checks"];
elif action == "bet":
potSize = ha.chips + reduce(lambda a,b : a + b, ha.pBet);
betSize = potSize;
if (ha.pChips[ha.currentPlayer] < betSize) :
betSize = ha.pChips[ha.currentPlayer];
ha.pChips[ha.currentPlayer] = ha.pChips[ha.currentPlayer] - betSize;
ha.pMPIP[ha.currentPlayer] = ha.pMPIP[ha.currentPlayer] + betSize;
ha.pBet[ha.currentPlayer] = betSize;
ha.log = ha.log + [
"Player " + str(ha.currentPlayer) + " bets " + str(betSize)
];
ha.currentPlayer = (ha.currentPlayer + 1) % len(PLAYERS);
return ha
#
# returns number of action based on strategy distribution
#
def randomActionFromStrategy(strategy):
c= random.random()
strategySum = 0
for i in range(len(strategy)):
strategySum += strategy[i]
if (c < strategySum):
return i
def isPreflop(I):
return len(I['infoSet']) < 10 #to be determined. preflop infoset keys are shorter, but the bettinground is also included in the infoset.
def getActionsFromInfoSet(I):
#1 get current round actions
#2 see if they're equal
return [];
def shuffle(a):
j = 0
x = 0
i = 0
for i in range(len(a) - 1), i > 0, --i:
j = math.floor(random.random() * (i + 1))
x = a[i]
a[i] = a[j]
a[j] = x
return a
def pChipGet(p):
if (p == 0):
return STARTING_STACK - 50
if (p == 1):
return STARTING_STACK - 100
return STARTING_STACK
def pMPIPGet(p):
if (p == 0):
return 50
if (p == 1):
return 100
return 0
class HistoryMetaClass(type):
def __getitem__(cls, x):
return getattr(cls, x)
def __new__(cls, name, parents, dct):
dct["__getitem__"] = cls.__getitem__
return super().__new__(cls, name, parents, dct)
class History(metaclass=HistoryMetaClass):
def __init__(self, h):
self.preflop = h['preflop']
self.flop = h['flop']
self.turn = h['turn']
self.river = h['river']
self.over = h['over']
self.bettingRound = h['bettingRound']
self.board = [*h['board']]
self.chips = h['chips']
self.pLastAction = [*h['pLastAction']]
self.pFolded = [*h['pFolded']]
self.pCards = [*h['pCards']]
self.pMPIP = [*h['pMPIP']]
self.pBet = [*h['pBet']]
self.pChips = [*h['pChips']]
self.deck = [*h['deck']]
self.depth = h['depth']
self.log = h['log']
self.currentPlayer = h['currentPlayer']
self.showdown = h['showdown']
self.winner = h['winner']
def initiateHistory(ms):
deck = list(map(
lambda rank : rank + "h",
ranks
))+ list(map(
lambda rank : rank + "d",
ranks
))+ list(map(
lambda rank : rank + "c",
ranks
))+ list(map(
lambda rank : rank + "s",
ranks
))
#deck = shuffle(unshuffledDeck)
random.shuffle(deck)
emptyHistory = History({
'preflop': "",
'flop': "",
'turn': "",
'river': "",
'over': "",
'log': [],
'bettingRound': 0,
'board': [],
'chips': 150,
'pLastAction': list(map(lambda p : None, PLAYERS)),
'pFolded': list(map(lambda p : False, PLAYERS)),
'pChips': list(map(lambda p : pChipGet(p), PLAYERS)),
'pCards': list(map(lambda p : [deck.pop(), deck.pop()], PLAYERS)),
'pMPIP': list(map(lambda p : pMPIPGet(p), PLAYERS)),
'pBet': list(map(lambda p : pMPIPGet(p), PLAYERS)),
'deck': deck[:],
'depth': 0,
'currentPlayer': 2 if len(PLAYERS) > 2 else 1,
'showdown': [],
'winner': None
})
return emptyHistory
#MCCFR with pruning for very negative regrets
def traverseMCCFR_P(h,p):
if (isTerminal(h)):
h2 = calculateWinner(h)
utility = getUtility(h2,p)
return utility
elif not inHand(h,p):
h0 = doAction(h, "none", p)
return traverseMCCFR_P(h0, p) #the remaining actions are irrelevant to Player i
elif needsChanceNode(h):
ha = nextRound(h)
return traverseMCCFR_P(ha,p)
elif h.currentPlayer == p:
#if history ends with current player to act
I = getInformationSet(h,p) # the Player i infoset of this node . GET node?
strategyI = calculateStrategy(I['regretSum'],h) #determine the strategy at this infoset
v = 0
va = []
actions = getActions(h)
explored = []
for a in range(len(actions)):
if (I['regretSum'][a] > C):
ha = doAction(h,actions[a],p)
va.append(traverseMCCFR_P(ha,p))
explored.append(True)
try:
v = v + strategyI[a] * va[a]
except IndexError:
pass
else:
explored.append(False)
for a in range(len(actions)):
if (explored[a] == True):
newRegret = list(map(
lambda r,i : r+va[a]-v if a == i else r,
I['regretSum'], [index for index, value in enumerate(I['regretSum'])]
))
node = {**I, 'regretSum': newRegret}
treeMap[I['infoSet']] = node
return v;
else:
Ph = h.currentPlayer
I = getInformationSet(h,Ph)
strategy = calculateStrategy(I['regretSum'],h)
actions = getActions(h)
chosenAction = randomActionFromStrategy(strategy) #sample an action from the probability distribution
ha = doAction(h,actions[chosenAction],Ph)
return traverseMCCFR_P(ha,p)
#
# update the regrets for Player i
#
def traverseMCCFR(h,p):
if isTerminal(h) == True:
h2 = calculateWinner(h)
utility = getUtility(h2,p)
# if (utility > 0):
# print("Terminal with utility", utility, "H", h)
return utility
elif not inHand(h,p):
# print("!inHand")
h0 = doAction(h, "none", p)
return traverseMCCFR(h0,p) #the remaining actions are irrelevant to Player i
elif needsChanceNode(h):
# print("Needs chance node");
ha = nextRound(h)
return traverseMCCFR(ha,p)
elif h.currentPlayer == p:
#print("You", p)
#if history ends with current player to act
I = getInformationSet(h,p) # the Player i infoset of this node . GET node?
strategyI = calculateStrategy(I['regretSum'],h) #determine the strategy at this infoset
v = 0
va = []
actions = getActions(h)
ha = ""
for a in range(len(actions)):
ha = doAction(h,actions[a],p)
va.append(traverseMCCFR(ha,p))
try:
v = v + strategyI[a] * va[a]
except IndexError:
pass
for a in range(len(actions)):
newRegret = list(map(
lambda r,i : r+va[a]-v if a == i else r,
I['regretSum'], [index for index, value in enumerate(I['regretSum'])]
))
node = {**I, 'regretSum': newRegret}
treeMap[I['infoSet']] = node
# print("we get here")
return v
else:
Ph = h.currentPlayer
# print("Player", Ph, "'s turn")
I = getInformationSet(h,Ph)
strategyI = calculateStrategy(I['regretSum'], h)
actions = getActions(h)
chosenAction = randomActionFromStrategy(strategyI) #sample an action from the probability distribution
ha = doAction(h, actions[chosenAction], Ph)
return traverseMCCFR(ha,p)
#
# update the average strategy for Player i
# @param {*} h history
# @param {*} p Player i
#
def updateStrategy(h,p,depth):
if isTerminal(h) | inHand(h,p)==false | h.bettingRound > 0:
# print("isTerminal(h) | !inHand(h, p) | h.bettingRound > 0")
#average strategy only tracked on the first betting round
return
elif needsChanceNode(h):
# print("Needs chance node")
#sample an action from the chance probabilities
ha = nextRound(h)
depth+=1
updateStrategy(h,p,depth)
elif h.currentPlayer == p:
# print("getCurrentPlayer(h)==p")
#if history ends with current player to act
I = getInformationSet(h,p) # the Player i infoset of this node . GET node?
strategyI = calculateStrategy(I['regretSum'],h) #determine the strategy at this infoset
actions = getActions(h)
a = randomActionFromStrategy(strategyI) #sample an action from the probability distribution
actionCounter = I['actionCounter']
actionCounter[a] = actionCounter[a] + 1
if actionCounter[a] > 1:
print("incrementing actioncounter and chancing strategy" +
I['infoSet'] +
str(actionCounter) +
str(strategyI))
treeMap[I['infoSet']] = {**I, 'actionCounter': actionCounter, 'strategy': strategyI} #increment action and add strategy
ha = doAction(h,actions[a],p)
depth+=1
updateStrategy(ha,p,depth)
else:
actions = getActions(h)
# print("ELSE")
ha = ""
for a in range(len(actions)):
ha = doAction(h,actions[a],p)
depth+=1
updateStrategy(ha,p,depth) #traverse each action
#
#
# @param {*} R(Ii)
# @param {*} Ii
#
def calculateStrategy(R,h):
sum = 0
strategyI = []
actions = getActions(h)
for a in range(len(actions)):
try:
sum = sum + R[a]
except IndexError:
pass
for a in range(len(actions)):
if sum > 0:
try:
strategyI.append(R[a] / sum)
except IndexError:
pass
else:
strategyI.append(1 / len(actions))
return strategyI
def processKey(key):
I = treeMap[key]
if (getCurrentPlayerFromInfoSet(I['infoSet']) == p):
actions = getActionsFromInfoSet(I)
regretSum = []
strategy = []
for a in range(len(actions)):
regretSum.append(0)
if isPreflop(I):
strategy.append(0) # 𝜙(Ii,a) = 0; not sure if this is correct
treeMap[I['infoSet']] = {**I, 'regretSum': regretSum, 'strategy': strategy}
def processExtra(key):
I = treeMap[key]
if (getCurrentPlayerFromInfoSet(I['infoSet']) == p):
regretSum = list(map(lambda Ra : Ra * d, I['regretSum']))
strategy = list(map(lambda Sa : Sa * d, I['strategy']))
treeMap[I['infoSet']] = { **I, 'regretSum': regretSum, 'strategy': strategy}
def MCCFR_P(minutes=1, h=""):
for p in range(len(PLAYERS)):
map(lambda key : processKey(key), treeMap.keys())
start = perf_counter()
iterations = 0
t = 0
while (t / 60 < minutes):
iterations += 1
if (iterations % 1000 == 0):
print("iterations", iterations, "time", round(t))
emptyHistory = initiateHistory(t)
for p in range(len(PLAYERS)):
# print("Player", p)
if t % STRATEGY_INTERVAL == 1:
updateStrategy(emptyHistory,p,0)
if t / 60 > PRUNE_THRESHOLD:
q = random.random()
if (q < 0.05):
traverseMCCFR(emptyHistory,p)
else:
traverseMCCFR_P(emptyHistory,p)
else:
traverseMCCFR(emptyHistory,p)
# every 10 minutes, discount regrets and [strategies?] with factor d
if (t < LCFR_THRESHOLD & round(t/60) % DISCOUNT_INTERVAL == 0):
m = t / 60
d = (m / DISCOUNT_INTERVAL) / (m / DISCOUNT_INTERVAL + 1)
for p in range(len(PLAYERS)):
map(lambda key : processExtra(key), treeMap.keys())
t = perf_counter() - start
print("done")
return 0 # return 𝜙. must be strategy
MCCFR_P(60)
# map(lambda I : print(treeMap[I]), treeMap.keys())
print("we have ", len(treeMap.keys()), "entries in the Object")