Back to Projects List
- Raymond Yang (University of Massachusetts Boston)
- Lipeng Ning (BWH & Harvard Medical School)
- Daniel Haehn (University of Massachusetts Boston)
- Yogesh Rathi (BWH & Harvard Medical School)
- Steve Pieper (Isomics, Inc.)
Develop a deep learning based Brain Masking Module with improved performance and accuracy over current alternatives.
- Objective A. Test accuracy and reliability of a Deep Learning based Brain Masking Solution
- Objective B. Integrate the solution into 3D slicer
- Objective C. Test and improve performance of the integrated solution
- Explore Image Registration options (EasyReg/MERMAID)
- Research current Deep Learning based Brain Masking (HD-BET, Auto Net)
- Get access to data for training and testing
- Create the solution
- Figure out how to integrate the solution
- Evaluate the performance
- Applied for NIH Dataset Request
- Tested HD-BET Segmentation
- Extracted PyTorch parameter(s) from HD-BET
- Begin building Slicer Module with HD-BET parameters
HD-BET Accurate segmentation (5 model ensemble)
Anatomical Data Augmentation via Fluid-based Image Registration Zhengyang Shen, Zhenlin Xu, Sahin Olut, Marc Niethammer. MICCAI 2020.
Region-specific Diffeomorphic Metric Mapping Zhengyang Shen, François-Xavier Vialard, Marc Niethammer. NeurIPS 2019.
Networks for Joint Affine and Non-parametric Image Registration Zhengyang Shen, Xu Han, Zhenlin Xu, Marc Niethammer. CVPR 2019.
Isensee F, Schell M, Tursunova I, Brugnara G, Bonekamp D, Neuberger U, Wick A, Schlemmer HP, Heiland S, Wick W, Bendszus M, Maier-Hein KH, Kickingereder P. Automated brain extraction of multi-sequence MRI using artificial neural networks. Hum Brain Mapp. 2019; 1–13. https://doi.org/10.1002/hbm.24750
S. S. Mohseni Salehi, D. Erdogmus and A. Gholipour, "Auto-Context Convolutional Neural Network (Auto-Net) for Brain Extraction in Magnetic Resonance Imaging," in IEEE Transactions on Medical Imaging, vol. 36, no. 11, pp. 2319-2330, Nov. 2017, doi: 10.1109/TMI.2017.2721362.