-
Notifications
You must be signed in to change notification settings - Fork 8
/
lars.py
169 lines (142 loc) · 5.95 KB
/
lars.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import torch
from torch.optim.optimizer import Optimizer
from typing import Dict, Iterable, Optional, Callable, Tuple
from torch import nn
"""
We recommend using create_optimizer_lars and setting bn_bias_separately=True
instead of using class Lars directly, which helps LARS skip parameters
in BatchNormalization and bias, and has better performance in general.
Polynomial Warmup learning rate decay is also helpful for better performance in general.
"""
def create_optimizer_lars(model, lr, momentum, weight_decay, bn_bias_separately, epsilon):
if bn_bias_separately:
optimizer = Lars([
dict(params=get_common_parameters(model, exclude_func=get_norm_bias_parameters)),
dict(params=get_norm_bias_parameters(model), weight_decay=0, lars=False)],
lr=lr,
momentum=momentum,
weight_decay=weight_decay,
epsilon=epsilon)
else:
optimizer = Lars(model.parameters(),
lr=lr,
momentum=momentum,
weight_decay=weight_decay,
epsilon=epsilon)
return optimizer
class Lars(Optimizer):
r"""Implements the LARS optimizer from `"Large batch training of convolutional networks"
<https://arxiv.org/pdf/1708.03888.pdf>`_.
Args:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate
momentum (float, optional): momentum factor (default: 0)
eeta (float, optional): LARS coefficient as used in the paper (default: 1e-3)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
"""
def __init__(
self,
params: Iterable[torch.nn.Parameter],
lr=1e-3,
momentum=0,
eeta=1e-3,
weight_decay=0,
epsilon=0.0
) -> None:
if not isinstance(lr, float) or lr < 0.0:
raise ValueError("Invalid learning rate: {}".format(lr))
if momentum < 0.0:
raise ValueError("Invalid momentum value: {}".format(momentum))
if weight_decay < 0.0:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
if eeta <= 0 or eeta > 1:
raise ValueError("Invalid eeta value: {}".format(eeta))
if epsilon < 0:
raise ValueError("Invalid epsilon value: {}".format(epsilon))
defaults = dict(lr=lr, momentum=momentum,
weight_decay=weight_decay, eeta=eeta, epsilon=epsilon, lars=True)
super().__init__(params, defaults)
@torch.no_grad()
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
weight_decay = group['weight_decay']
momentum = group['momentum']
eeta = group['eeta']
lr = group['lr']
lars = group['lars']
eps = group['epsilon']
for p in group['params']:
if p.grad is None:
continue
decayed_grad = p.grad
scaled_lr = lr
if lars:
w_norm = torch.norm(p)
g_norm = torch.norm(p.grad)
trust_ratio = torch.where(
w_norm > 0 and g_norm > 0,
eeta * w_norm / (g_norm + weight_decay * w_norm + eps),
torch.ones_like(w_norm)
)
trust_ratio.clamp_(0.0, 50)
scaled_lr *= trust_ratio.item()
if weight_decay != 0:
decayed_grad = decayed_grad.add(p, alpha=weight_decay)
decayed_grad = torch.clamp(decayed_grad, -10.0, 10.0)
if momentum != 0:
param_state = self.state[p]
if 'momentum_buffer' not in param_state:
buf = param_state['momentum_buffer'] = torch.clone(
decayed_grad).detach()
else:
buf = param_state['momentum_buffer']
buf.mul_(momentum).add_(decayed_grad)
decayed_grad = buf
p.add_(decayed_grad, alpha=-scaled_lr)
return loss
"""
Functions which help to skip bias and BatchNorm
"""
BN_CLS = (nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d)
def get_parameters_from_cls(module, cls_):
def get_members_fn(m):
if isinstance(m, cls_):
return m._parameters.items()
else:
return dict()
named_parameters = module._named_members(get_members_fn=get_members_fn)
for name, param in named_parameters:
yield param
def get_norm_parameters(module):
return get_parameters_from_cls(module, (nn.LayerNorm, *BN_CLS))
def get_bias_parameters(module, exclude_func=None):
excluded_parameters = set()
if exclude_func is not None:
for param in exclude_func(module):
excluded_parameters.add(param)
for name, param in module.named_parameters():
if param not in excluded_parameters and 'bias' in name:
yield param
def get_norm_bias_parameters(module):
for param in get_norm_parameters(module):
yield param
for param in get_bias_parameters(module, exclude_func=get_norm_parameters):
yield param
def get_common_parameters(module, exclude_func=None):
excluded_parameters = set()
if exclude_func is not None:
for param in exclude_func(module):
excluded_parameters.add(param)
for name, param in module.named_parameters():
if param not in excluded_parameters:
yield param