forked from mlfoundations/model-soups
-
Notifications
You must be signed in to change notification settings - Fork 0
/
learned_bylayer.py
223 lines (188 loc) · 7.85 KB
/
learned_bylayer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
###
# Disclaimer: This is not our central method, we recommend the greedy soup which is found in main.py.
# This method is described in appendix I and, compared to main.py, this code is much less tested.
# For instance, we don't know how stable the results are under optimization noise. However, we expect
# this method to outperform greedy soup. Still, we recommend using greedy soup and not this.
# As mentioned in the paper, this code is computationally expernsive as it requires loading models in memory.
# We run this on a node with 490GB RAM and use 1 GPU with 40GB of memory.
# It also looks like PyTorch released a very helpful utility which we recommend if re-implementing:
# https://pytorch.org/docs/stable/generated/torch.nn.utils.stateless.functional_call.html?utm_source=twitter&utm_medium=organic_social&utm_campaign=docs&utm_content=functional-api-for-modules
# When running with lr = 0.05 and epochs = 5 we get 81.38%.
###
import argparse
import os
import wget
import torch
import clip
import os
import time
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import torch
from torch.utils.data import SubsetRandomSampler
from torchvision import models
from torch.autograd.functional import vhp, jvp, jacobian
from torchvision import datasets
from datasets.imagenet import ImageNet2pShuffled, ImageNet
from utils import ModelWrapper, maybe_dictionarize_batch, cosine_lr
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument(
"--data-location",
type=str,
default=os.path.expanduser('~/data'),
help="The root directory for the datasets.",
)
parser.add_argument(
"--model-location",
type=str,
default=os.path.expanduser('~/ssd/checkpoints/soups'),
help="Where to download the models.",
)
parser.add_argument(
"--download-models", action="store_true", default=False,
)
parser.add_argument(
"--batch-size",
type=int,
default=256,
)
parser.add_argument(
"--workers",
type=int,
default=8,
)
return parser.parse_args()
# Utilities to make nn.Module functional
def del_attr(obj, names):
if len(names) == 1:
delattr(obj, names[0])
else:
del_attr(getattr(obj, names[0]), names[1:])
def set_attr(obj, names, val):
if len(names) == 1:
setattr(obj, names[0], val)
else:
set_attr(getattr(obj, names[0]), names[1:], val)
def make_functional(mod):
orig_params = tuple(mod.parameters())
# Remove all the parameters in the model
names = []
for name, p in list(mod.named_parameters()):
del_attr(mod, name.split("."))
names.append(name)
return orig_params, names
def load_weights(mod, names, params):
for name, p in zip(names, params):
set_attr(mod, name.split("."), p)
class AlphaWrapper(torch.nn.Module):
def __init__(self, paramslist, model, names):
super(AlphaWrapper, self).__init__()
self.paramslist = paramslist
self.model = model
self.names = names
ralpha = torch.ones(len(paramslist[0]), len(paramslist))
ralpha = torch.nn.functional.softmax(ralpha, dim=1)
self.alpha_raw = torch.nn.Parameter(ralpha)
self.beta = torch.nn.Parameter(torch.tensor(1.))
def alpha(self):
return torch.nn.functional.softmax(self.alpha_raw, dim=1)
def forward(self, inp):
alph = self.alpha()
params = tuple(sum(tuple(pi * alphai for pi, alphai in zip(p, alph[j].cpu()))) for j, p in enumerate(zip(*self.paramslist)))
params = tuple(p.cuda(0) for p in params)
load_weights(self.model, self.names, params)
out = self.model(inp)
return self.beta * out
def get_imagenet_acc(test_dset):
with torch.no_grad():
correct = 0.
n = 0
end = time.time()
for i, batch in enumerate(test_dset.test_loader):
batch = maybe_dictionarize_batch(batch)
inputs, labels = batch['images'].cuda(), batch['labels'].cuda()
data_time = time.time() - end
end = time.time()
logits = alpha_model(inputs)
loss = criterion(logits, labels)
pred = logits.argmax(dim=1, keepdim=True).to(device)
y = labels
correct += pred.eq(y.view_as(pred)).sum().item()
n += y.size(0)
batch_time = time.time() - end
percent_complete = 100.0 * i / len(test_dset.test_loader)
if ( i % 10 ) == 0:
print(
f"Train Epoch: {0} [{percent_complete:.0f}% {i}/{len(test_dset.test_loader)}]\t"
f"Loss: {loss.item():.6f}\tData (t) {data_time:.3f}\tBatch (t) {batch_time:.3f}", flush=True
)
end = time.time()
acc = correct / float(n)
print('Top-1', acc)
return acc
if __name__ == '__main__':
args = parse_arguments()
NUM_MODELS = 72
# Step 1: Download models.
if args.download_models:
if not os.path.exists(args.model_location):
os.mkdir(args.model_location)
for i in range(NUM_MODELS):
print(f'\nDownloading model {i} of {NUM_MODELS - 1}')
wget.download(
f'https://github.com/mlfoundations/model-soups/releases/download/v0.0.2/model_{i}.pt',
out=args.model_location
)
model_paths = [os.path.join(args.model_location, f'model_{i}.pt') for i in range(NUM_MODELS)]
base_model, preprocess = clip.load('ViT-B/32', 'cpu', jit=False)
criterion = torch.nn.CrossEntropyLoss()
device = torch.device('cuda')
train_dset = ImageNet2pShuffled(preprocess, location=args.data_location, batch_size=args.batch_size, num_workers=args.workers)
test_dset = ImageNet(preprocess, location=args.data_location, batch_size=args.batch_size, num_workers=args.workers)
sds = [torch.load(cp, map_location='cpu') for cp in model_paths]
feature_dim = sds[0]['classification_head.weight'].shape[1]
num_classes = sds[0]['classification_head.weight'].shape[0]
model = ModelWrapper(base_model, feature_dim, num_classes, normalize=True)
model = model.to(device)
_, names = make_functional(model)
first = False
paramslist = [tuple(v.detach().requires_grad_().cpu() for _, v in sd.items()) for i, sd in enumerate(sds)]
torch.cuda.empty_cache()
alpha_model = AlphaWrapper(paramslist, model, names)
print(alpha_model.alpha())
print(len(list(alpha_model.parameters())))
lr = 0.05
epochs = 5
optimizer = torch.optim.AdamW(alpha_model.parameters(), lr=lr, weight_decay=0.)
num_batches = len(train_dset.train_loader)
for epoch in range(epochs):
end = time.time()
for i, batch in enumerate(train_dset.train_loader):
step = i + epoch * num_batches
batch = maybe_dictionarize_batch(batch)
inputs, labels = batch['images'].cuda(), batch['labels'].cuda()
data_time = time.time() - end
end = time.time()
optimizer.zero_grad()
out = alpha_model(inputs)
loss = criterion(out, labels)
loss.backward()
optimizer.step()
batch_time = time.time() - end
percent_complete = 100.0 * i / len(train_dset.train_loader)
if ( i % 10 ) == 0:
# print(alpha_model.beta)
print(
f"Train Epoch: {epoch} [{percent_complete:.0f}% {i}/{len(train_dset.train_loader)}]\t"
f"Loss: {loss.item():.6f}\tData (t) {data_time:.3f}\tBatch (t) {batch_time:.3f}", flush=True
)
# print(alpha_model.alpha())
end = time.time()
acc = get_imagenet_acc(test_dset)
print('Accuracy is', 100 * acc)
# torch.save(
# {'alpha' : alpha_model.alpha(), 'beta' : alpha_model.beta},
# f'alphas_{lr}_{epochs}.pt'
# )